Tutorial sheet 3

6. $(1+1)$ -dimensional relativistic motion

Consider a $(1+1)$ -dimensional relativistic motion along a direction denoted as z, where "1+1" stands for one time and one spatial dimension — throughout this exercise you may totally ignore the existence of the x and y directions. When the motion along the z -direction involves high velocities, it becomes appropriate to replace the Minkowski coordinates (t, z) by the proper time (of a comoving observer) τ and *spatial rapidity* ς such that^{[1](#page-0-0)}

$$
\tau \equiv \sqrt{t^2 - z^2}, \quad \varsigma \equiv \frac{1}{2} \log \frac{t+z}{t-z} \quad \text{where } |z| \le t. \tag{1}
$$

Throughout the exercise, we use a system of units in which the speed of light in vacuum c equals 1, as well as Einstein's summation convention. For completeness, the relevant components of the metric tensor in Minkowski coordinates are $g_{tt} = -1$, $g_{zz} = +1$, $g_{tz} = g_{zt} = 0$.

i. Check that the relations defining τ and ζ can be inverted, yielding the much simpler

$$
t = \tau \cosh \varsigma, \quad z = \tau \sinh \varsigma. \tag{2}
$$

(*Hint*: Recognize $\frac{1}{2} \log \frac{1+u}{1-u}$).

Deduce the following relationship between the basis vectors of the two coordinate systems

$$
\begin{cases} \vec{e}_{\tau}(\tau,\varsigma) = \cosh \varsigma \, \vec{e}_t + \sinh \varsigma \, \vec{e}_z \\ \vec{e}_{\varsigma}(\tau,\varsigma) = \tau \sinh \varsigma \, \vec{e}_t + \tau \cosh \varsigma \, \vec{e}_z \end{cases} \tag{3}
$$

and write down the metric tensor $g_{\tau\tau}$, $g_{\varsigma\varsigma}$... in the new coordinate system. For the sake of completeness, give also the components $g^{\mu\nu}$ of the inverse metric tensor. Here and in the following, the unprimed indices μ , ν , ρ run over $\{\tau, \varsigma\}$.

ii. Inspiring yourself from what was done in the case of the two-dimensional Euclidean plane in the lecture, compute the Christoffel symbols $\Gamma^{\mu}_{\nu\rho}$.

iii. Let $N^{\mu}(x)$ denote the components of a 4-vector field. From now on, the x-dependence of the various fields (and/or their components) will be omitted for the sake of brevity.

Write down the covariant derivative $d_\nu N^\mu \equiv dN^\mu/dx^\nu$ that generalizes to curvilinear (τ, ζ) coordinates the derivative $\partial_{\nu'}N^{\mu'}\equiv \partial N^{\mu'}/\partial x^{\nu'}$ of Minkowski coordinates. Compute the 4-divergence $d_{\mu}N^{\mu}$.

iv. Let $T^{\mu\nu}$ denote the components of a symmetric $\binom{2}{0}$ -tensor field such that $T^{tz} = 0$. Write down the covariant derivative $d_{\rho}T^{\mu\nu}$ and compute $d_{\mu}T^{\mu\nu}$ for $\nu \in {\tau, \varsigma}.$

v. Draw on a spacetime diagram—with t on the vertical axis and z on the horizontal axis—the lines of constant τ and those of constant ζ .

¹The coordinates (τ, ς) are sometimes called *Milne coordinates*.