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Tutorial sheet 11

Discussion topic: Convective heat transfer: what is the Rayleigh–Bénard convection? Describe its
phenomenology. Which effects play a role?

For the sake of brevity, throughout this exercise sheet the dependence of the various fields on the
space and time variables is not written.

20. Thermal convection between two vertical plates
Consider a fluid in a gravitational potential −~∇Φ = ~g ≡ g~ez, contained between two infinite

vertical plates at x = ±d/2. When the plates have the same uniform temperature, there exist a static
“isothermal” solution of the equations of motion describing the fluid, in which the latter is at the same
temperature Teq everywhere.

Assume that the plate at x = −d/2 resp. x = +d/2 is at a uniform temperature T− resp. T+ with
T− < T+: this will induce a motion of the fluid, which we want to investigate. For simplicity, we shall
assume that the motion is steady, and that it constitutes a small perturbation of the equilibrium state
in which both temperatures are equal. Accordingly, the pressure, temperature and mass density are
written in the form

P = P eq + δP , T = Teq + δT , ρ = ρeq + δρ, (1)
where the quantities with the subscript eq. refer to the equilibrium state, which need not be further
specified.

i. Show that the relevant equations (VIII.8), (VIII.9), (VIII.12), (VIII.13) introduced in the lecture
lead for the small quantities δP , δT , δρ and ~v to the system

~∇ ·~v = 0 (2a) ~∇
(
δP
)

= δρ~g + νρeq4~v (2b)

~v · ~∇Teq = α4
(
δT
)

(2c) δρ = −α(V )ρeq δT (2d)

where the stationarity assumption has already been used. How did you implement the assumed smallness
of the “perturbations” to the static state? How can you already simplify Eq. (2c)?

ii. Let us assume that the new flow only depends on the x-coordinate, and that the y-direction plays
no role at all; in particular, there is no component vy. Let us further assume that the net mass flow
through any plane z = const. vanishes, i.e.∫ d/2

−d/2
ρeq vz(x, y, z) dx = 0 (3)

for all y, z: this condition allows us to fully specify the “boundary” conditions to be obeyed by the
velocity field.
a) Determine first the temperature-variation profile δT (x) and deduce from it the mass density per-
turbation δρ(x). (Hint : Eqs. (2c)–(2d)).
b) Determine the velocity profile between the two plates. How do the streamlines look like?

iii. Time for some physics: what is absurd with the assumption of an infinite extent in the z-direction?
Is there really heat convection in the flow determined in question ii.? Can you think of an (everyday-life)
example—with finite plates!—corresponding to the setup considered here?

21. Speed of sound in ultrarelativistic matter
Consider a perfect fluid with the usual energy-momentum tensor. Tµν = Pgµν + (ε+ P )uµuν/c2. It

is assumed that there is no conserved quantum number relevant for thermodynamics, so that the energy
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density in the local rest frame ε is function of a single thermodynamic variable, for instance ε = ε(P ).
Throughout the exercise, Minkowski coordinates are used.

A background “flow” with uniform local-rest-frame energy density and pressure ε0 and P 0 is sub-
mitted to a small perturbation resulting in ε = ε0 + δε, P = P 0 + δP , and ~v = ~0 + δ~v.

i. Starting from the energy-momentum conservation equation ∂µT
µν = 0, show that linearization

to first order in the perturbations leads to the two equations of motion ∂tδε = −(ε0 + P 0)~∇ · δ~v and
(ε0 + P 0)∂tδ~v = −c2~∇δP .

ii. Show that the speed of sound is given by the expression c2s =
c2

dε/dP
.

iii. Compute cs for a fluid obeying the Stefan–Boltzmann law P =
gπ2

90

(kBT )4

(~c)3
, with g the number of

degrees of freedom (e.g. g = 2 for blackbody radiation).
Hint : You may find the Gibbs–Duhem relation useful...
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