Hydrodynamics II





Time/place: Lecture (eKVV):  Wed 10:15-12:00 (in X-E0-222) 
→  link to the Zoom meeting room  (meeting ID: 960 2306 4800; password sent by email)
Tutorials (eKVV):  Wed 08:15-09:00 (in ...)
→  link to the Zoom meeting room  (meeting ID: 972 4826 8147; password sent by email)

Instructor: Nicolas Borghini (borghini at physik dot uni-bielefeld dot de) E6-123
Tutor:  Hendrik Roch and/or Nina Kersting
 
Oral exam, registration at the end of the semester

Homepage:   http://www.physik.uni-bielefeld.de/~borghini/Teaching/Hydro-II/
 
News: none
 
Prerequisites: Classical mechanics, Special Relativity, Thermodynamics & Statistical physics
(Theoretische Physik I, II, III)
 
Literature: * Faber: Fluid dynamics for physicists
* Guyon, Hulin, Petit, Mitescu: Physical hydrodynamics
* Landau & Lifshitz: Course of theoretical physics: Vol. 6: Hydrodynamics
* Rezzolla & Zanotti: Relativistic hydrodynamics  (online access,  list of corrections)
 
Content: Dynamics of relativistic fluids  
  April 22  Fundamental equations of relativistic fluid dynamics
  April 29  Four-velocity; perfect relativistic fluid
  May 6  Nonrelativistic limit of the dynamical laws for perfect relativistic fluids
              Mathematical interlude (1): curvilinear coordinates
  May 13  Examples of perfect relativistic flows
  May 20  Dissipative relativistic fluids: dissipative currents; local rest frames
  May 27  Dissipative relativistic fluids: equations of motion; first- and second-order dissipative hydrodynamics
  June 3  An example of dissipative relativistic flow
Nonrelativistic flows  
  June 3  Potential flows
  June 10  Mathematical results on potential flows; two-dimensional potential flows
  June 17  Examples of two-dimensional potential flows
  June 24  Linear sea surface waves
  July 1st  Nonlinear sea surface waves; Korteweg-de Vries equation
                Mathematical interlude (2): dimensional analysis
  July 8  Convective heat transfer
  July 15  Statistical description of turbulence

Links: * Illustrative videos by the (US) National Committee for Fluid Mechanics Films; you can also check the accompanying film notes
* Online version of the NIST Handbook of mathematical functions