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Solution to sheet 9

Discussion topic: Kinetic theory: which object does it consider? How does the fundamental equa-

tion look like? Which assumptions on the system underlie the description?

Throughout the exercise sheet, a system of units such that the constants c, ~ and kB all equal 1 is used.

18. A possible scaling of the anisotropic �ow coe�cients of composite particles
Consider heavy-ion collisions resulting in the emission of protons and neutrons with the same

transverse-momentum dependent anisotropic �ow coe�cients v2,N (pT ), . . . , where the subscript N
stands for nucleons. If a proton and neutron �y together � that is, with same transverse velocity or

equivalently momentum � along the same direction for long enough, they may bind together into a

deuteron (2H). If three nucleons �y together, they may form a 3H or 3He nucleus.

Assuming that these light nuclei really result from the �coalescence� or 2 resp. 3 nucleons with

the same transverse momentum, can you express their respective elliptic �ow coe�cients v2,2H(pT ),
v2,3H(pT ), v2,3He(pT ) as a function of the elliptic �ow v2,N of nucleons at an appropriate transverse

momentum? Give v2,2H(pT ), resp. v2,3H(pT ) and v2,3He(pT ) up to second resp. third order in v2,N .

Hint : You may want to go back to the level of the transverse momentum (pT ) distributions.

Solution:

Let us start by writing the probability of �nding one nucleon at a given ~pT . If you go back a few

exercises ago you may �nd a similar expression to what follows

PN (pT ) =
1

2π
(1 + 2v2,N (pT ) cos(2(φ−ΨR))),

where we have assumed that there is only elliptic �ow and that there are no correlations between par-

ticles. Notice that the probability also depends on the azimuth but I just write the pT dependence.

In order to form a deuteron (2H) we need to have two nucleons �ying more or less together such

that a bound state can be formed. This means that the azimuth of these nucleons must be the same

(or pretty similar).

Therefore we compute the product of probabilities as

PN (pT )PN (pT ) =
1

4π2
(1 + 4v2,N (pT ) cos(2(φ−ΨR)) + 4v22,N (pT ) cos2(2(φ−ΨR)))

where the result is no longer a probability since it is not normalized to unity (we could normalize it)

but we can understand it as a distribution i.e. the non-normalized probability of �nding a particle with

momentum pT and angle φ and another one with the same momentum. Notice that we use that both

particles must have the same momentum since otherwise no bound state could be created and it also

simpli�es the calculations.

The elliptic �ow coe�cients is

v2(pT ) =
< P (pT ) cos(2(φ− ψR)) >

< P (pT ) >
,
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where the average means an integral over the azimuth. Here you can see that it does not matter if you

normalize your distribution or not since the normalization factor would vanish when computing the

elliptic �ow coe�cient.

The above distribution for deuteron gives

v2,2H(2pT ) =
4πv2,N (pT )

2π + 4πv2,N (pT )
=

2v2,N (pT )

1 + 2v22,N (pT )
≈ 2v2,N (pT ) = 0.19 .

First of all the deuteron momentum is twice the nucleon one because of momentum conservation. Sec-

ondly notice that the elliptic �ow of the deuteron is basically twice the one of the nucleons however you

have to consider the shit in momentum. Last but not least, during the exercise we will use v2,N (pT ) = 0.1
as a typical value in order to see an example.

You can already guess how the game works if we want to form a tritium or a helium-3 which will

have the same elliptic �ow since both have three nucleons. The distribution in this case will read as

P 3
N (pT ) = 1 + 6v2,N (pT ) cos(2(φ− ψR)) + 12v22,N (pT ) cos2(2(φ− ψR)) + 8v32,N (pT ) cos3(2(φ− ψR)),

Similarly to the case above the elliptic �ow of the three-nucleons particles will be

v2,3H/3He(3pT ) =
3v2,N (pT ) + 3v32,N (pT )

1 + 6v22,N (pT )
≈ 3v2,N (pT ) = 0.29.

This model is called coalescence model since it is based on grouping quarks into groups of two or

three (for the case of quarks) to form either mesons or baryons which actually explains part of the

measured v2(pT ) experimental results. We used nucleons instead of quarks but the idea is exactly the

same.

On the �gure you can see (more or less) that coalescence does actually work. On the vertical axis

you have the v2 divided by the number of quarks and on the horizontal axis something similar to pT .
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Actually you have mT − mo =
√
m2 + p2T − m2 ≈ pT if the mass is negligible. At low momentum

coalescence does not work but instead one �nds mass scaling (showed on the lecture slides).

19. Thermodynamics of a relativistic gas of massive particles
Consider a gas of particles of mass m with a phase-space distribution given by the Maxwell�Jüttner

distribution1

f(x, p) = C ep
µuµ/T , (1)

where C is a normalization constant while both uµ and T are independent of x.

i. Compute the corresponding energy-momentum tensor, i.e. (why?) the energy density ε and pressure

P of the gas, as a function of T .
You may �nd that your results look nicer when expressed in terms of modi�ed Bessel functions of

the second kind (of integer order n)

Kn(z) =

∫ ∞
0

e−z coshλ cosh(nλ) dλ,

where Re(z) > 0.

Hint : Work in the appropriate reference frame!

Solution:

The energy momentum tensor can be computed from the particle distribution function as

Tµν =

∫
d3p

(2π)3E
pµpνf(x, p).

As you can see the energy momentum tensor does not depend on ~p and so it has to be integrated. Since

our gas of particles is isotropic we know that the pressure will be the same in all directions.

We start by computing the pressure which can be written as

Pi = T ii =

∫
d3p

(2π)3E
p2i f(x, p)

We can solve that integral by using spherical coordinates and a change of variable as follows,∫
d3p

(2π)3E
p2i f(x, p) =

4πC

3

∫
dp

(2π)3E
p4e−E/T

We introduce the change of variables (motivated by the hint given)√
p2 +m2 = e = m coshα p = m sinhα.

Hence the pressure reads as

Pi =
4πC

3(2π)3

∫
m4 sinh4(α)e−m cosh(α)/Tdα =

πC

6(2π)3
m4(−4K2(

m

T
) +K4(

m

T
) + 3K0(

m

T
))

where we have used that sinh4(x) = 1
8(−4 cosh(2x) + cosh(4x) + 3).

1Beware! in the exponent the mostly-plus metric is used.
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The result we have obtained is correct (hopefully) but it can simpli�ed using the properties of Bessel

functions. For example, a useful property is Kn(z) = Kn−2(z) + 2(n−1)
z Kn−1(z). Using these properties

we �nd

P = Px = Py = Pz =
C

2π2
m2T 2K2(

m

T
),

which has the proper dimensions (try to check it).

The energy density reads similarly

ε =

∫
d3p

(2π)3E
E2f(x, p) =

4πC

(2π)3

∫
m4 sinh2(α) cosh2(α)e−m cosh(α)/Tdα = ...

=
3C

2π2
m2T 2K2(

m

T
) +

C

2π2
m3TK1(

m

T
)

Another option for computing these integrals is to change to the transverse mass and the rapidity.

This might look more natural to us but then one has to integrate twice

ε =

∫
d3p

(2π)3E
E2f(x, p) =

C

(2π)2

∫
dy dmT dφm

3
T cosh2 y e−mT cosh y/T .

What about the other components of Tµν ? They are all zero due to symmetry arguments, notice

that they are integrals of odd powers of pi.

In the small mass limit we can expand the Bessel functions as

Kn(z) =
n!

zn
.

Therefore we �nd,

P =
C

π2
T 4 ε =

3C

π2
T 4,

which gives our well known relation ε = 3P . You have now found the e.o.s. of a massless gas!

Overall we have Tµµ = (ε, P, P, P ) and all the other components being zero. The energy momentum

tensor becomes traceless in the massless limit.

You can now repeat the calculations using a BE or FD distribution.

ii. Compute the particle number density n(T ). How is it related to the pressure? What do you

recognize?

Remark: this calculation of the particle number density actually determines the value of C.
Solution:

n =

∫
d3p

(2π)3E
Ef(x, p) = ... =

C

2π2
m2TK2(

m

T
) =

P

T
.

If you now integrate over the volume (3dim. volume) you will obtain the number of particles N

which will determine the constant C. Notice also that the particle density scales as T 3 contrary to the

one power more we found for the energy density and pressure.

iii. Using your results for ε(T ) and n(T ), compute the energy per particle ε(T )/n(T ) in the non-

relativistic limit T � m up to order T 2. Interpret the �rst two terms of your result.
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Hint : You may use the asymptotic expansion (valid for | arg z| < 3π
2 )

Kn(z) ∼
z→∞

√
π

2z
e−z
[
1 +

4n2 − 1

8z
+

(4n2 − 1)(4n2 − 9)

2!(8z)2
+O(z−3)

]
.

Solution: As suggested we expand the energy per particle for the non-relativistic limit.

ε

n
= 3T +m

K1(
m
T )

K2(
m
T )
≈ 3T −m− 3

2
T +

15

8

T 2

m2
=

3

2
T +m+

15

8

T 2

m2
≈ 3

2
T +m.

First, in the massless limit we have ε/n = 3T . In the "classic" limit we �nd at �rst approximation

ε/n = 3
2T which looks just as the equipartition theorem (1/2 for each dimension basically). If you go

further you get a correction factor which is the mass, as ε/n = 3
2T + m which, perhaps, tells us that

not all the energy of the system can be expended as thermal but part of it has to go to the mass or in

other words, of the total energy E and amount N times the mass has to be extracted in order to create

the particles and the rest can be used to increase the temperature from 0 to T. Further terms might be

corrections to all of the above.

Remark: The Maxwell�Jüttner distribution is for �classical� particles and ignores both Bose�Einstein

enhancement and Pauli's exclusion principle.
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