Tutorial sheet 8

Throughout the exercise sheet, a system of units such that the constants c, \hbar and k_B all equal 1 is used.

16. A toy equation of state

A long-used oversimplified Ansatz for the system created in high-energy nuclear collisions is that it would consist either of an ideal gas of massless pions or of an ideal gas of quarks and gluons with the respective pressures

$$
\mathcal{P}_{\pi}(T) = \frac{g_{\pi}\pi^2}{90}T^4 \qquad , \qquad \mathcal{P}_{qg}(T) = \frac{g_{qg}\pi^2}{90}T^4 - B, \tag{1}
$$

where the possible chemical potentials are ignored, with the corresponding energy densities given by

$$
\epsilon(T) = T \frac{\partial \mathcal{P}(T)}{\partial T} - \mathcal{P}(T). \tag{2}
$$

In Eq. (1) , the positive "bag constant" B is a temperature-independent pressure exerted by the exterior of the quark–gluon system, keeping the latter confined to a small spatial region.[1](#page-0-1)

i. Compute the energy and entropy density for either system.

ii. At a given temperature, the stable thermodynamic state is that with the larger pressure, corre-sponding to the smaller thermodynamic potential.^{[2](#page-0-2)}

a) Compute the temperature T_{tr} at which both pressures \mathcal{P}_{π} , \mathcal{P}_{qq} are equal as a function of g_{π} , g_{qq} and B. Sketch the plot of the pressure of the stable phase as a function of T.

b) At T_{tr} a first-order phase transition takes place, at which both phases can coexist. Denoting by ξ the relative fraction of pion gas in the stable phase— $\xi = 1$ for $T < T_{tr}$, $0 \le \xi \le 1$ for $T = T_{tr}$, and $\xi = 0$ for $T > T_{\text{tr}}$, the energy density reads $\epsilon = \xi \epsilon_{\pi} + (1 - \xi) \epsilon_{qq}$. Plot (sketch!) ϵ as a function of T, then $\mathcal P$ vs. ϵ , and eventually the speed of sound vs. ϵ .

c) Plot now the entropy density s as a function of temperature, again for the stable phase only. What do you notice?

In a first-order phase transition from a phase I to a phase II at a temperature T_{tr} , one introduces the *latent heat* (per unit volume) $L_{\text{I}\rightarrow\text{II}} \equiv T_{tr}(s_{\text{II}} - s_{\text{I}})$. This represents the amount of energy that must be provided to the system to turn one unit volume of phase I into a unit volume of phase II.[3](#page-0-3) Considering that the pion gas plays the role of phase I, compute the latent heat for the transition to the quark–gluon phase.

iii. In Eq. [\(1\)](#page-0-0), g_{π} and g_{qg} are the degeneracy factors. Knowing that a fermionic degree of freedom only gives a contribution $\frac{7}{8}$ to this factor, explain why the values $g_{\pi} = 3$ and $g_{qg} = 37$ are used, the latter for a system with 2 massless quark flavors (u, d) .

Taking $B = 0.4 \text{ GeV}/\text{fm}^3$, compute the numerical values of T_{tr} and the latent heat per unit volume.

17. Free-streaming gas of particles

i. Let $f(t,\vec{r},\vec{p})$ denote the single-particle phase-space distribution of a system of non-interacting, nondecaying particles evolving in the absence of long-range interactions deriving from a vector potential yet possibly in the presence of space-dependent forces $F(\vec{r})$ deriving from a constant scalar potential.

¹"Outside" the quark–gluon system lies the QCD vacuum: B was originally introduced to model the confinement of massless quarks inside hadrons ("MIT bag model").

²The grand canonical potential of a system with volume \mathcal{V} is $\Omega = -\mathcal{PV}$.

³Or equivalently, the amount of energy released when one unit volume of phase II turns into phase I.

Consider the particles which are at time t are in an infinitesimal phase-space volume $d^3 \vec{r} d^3 \vec{p}$ about point (\vec{r}, \vec{p}) . Where are these particles at the instant $t + \delta t$? Show that the volume element $d^3 \vec{r}' d^3 \vec{p}'$ they then occupy equals $d^3 \vec{r} d^3 \vec{p}$. Derive the partial differential equation governing the evolution of f. Hint: Particle number is conserved, and Newton's second law holds.

ii. Free-streaming solution

In the absence of collisions and of external forces, the (collisionless!) relativistic Boltzmann equation governing the evolution of the (on-shell) single-particle phase-space distribution $f(x,\vec{p})$ reads

$$
p^{\mu}\partial_{\mu}f(\mathbf{x},\vec{p}) = 0\tag{3}
$$

where the p^{μ} are the components of the four-momentum p.

Check that if the phase-space distribution equals a function $F_i(\vec{r},\vec{p})$ at some initial instant t_i (in a given reference frame), then at a later time t the distribution is given by

$$
f(t, \vec{r}, \vec{p}) = F_i \left(\vec{r} - \frac{\vec{p}}{p^0} (t - t_i), \vec{p} \right).
$$
\n⁽⁴⁾