Tutorial sheet 7

Discussion topic: Relativistic fluid dynamics: what are the fundamental equations? Which further ingredients are needed to model a specific system? Which assumption(s) underlie the description?

14. Local thermodynamics

In your Statistical Physics lectures, thermodynamics and in particular the fundamental thermodynamic relations were formulated for extensive quantities, as e.g.

$$U = TS - \mathcal{PV} + \sum_{a} \mu_a N_a \quad , \quad \mathrm{d}U = T\,\mathrm{d}S - \mathcal{P}\mathrm{d}\mathcal{V} + \sum_{a} \mu_a\,\mathrm{d}N_a$$

for a system with several conserved quantum numbers. The purpose of the present exercise is to derive the equivalent relations between the densities of the extensive thermodynamic parameters: energy density¹ ϵ , entropy density *s*, number densities n_a .²

i. The relation for the internal energy U translate at once in a relation for ϵ . Using the latter and the relation for dU, show that the differentials of energy density and pressure obey

$$d\epsilon = T ds + \sum_{a} \mu_{a} dn_{a} \quad , \quad d\mathcal{P} = s dT + \sum_{a} n_{a} d\mu_{a} \tag{1}$$

respectively. The second of these relations is the local version of the Gibbs-Duhem relation.

ii. Focusing on the case with no conserved quantum number, deduce from the previous relations an expression for the derivative

$$c_s^2 \equiv \frac{\partial \mathcal{P}}{\partial \epsilon} \tag{2}$$

in terms of the entropy density s and the temperature T.

Assuming that c_s^2 is a constant, in which case Eq. (2) is equivalent to the simple "equation of state" $\mathcal{P} = c_s^2 \epsilon$, show the scaling behaviors

$$\epsilon \propto T^{1+1/c_s^2} \quad , \quad s \propto T^{1/c_s^2}. \tag{3}$$

What do you find in the case $\epsilon = 3\mathcal{P}$? Since this is the equation of state for an ideal gas of ultrarelativistic particles, you may refresh your knowledge on the photon gas from your Statistical Physics lectures.

15. Relativistic fluid dynamics

The dynamics of a perfect relativistic fluid without conserved charge is entirely governed by the equation $\partial_{\mu}T^{\mu\nu} = 0$ with $T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + \mathcal{P}\Delta^{\mu\nu}$, with u^{μ} the 4-velocity and $\Delta^{\mu\nu} \equiv u^{\mu}u^{\nu} + g^{\mu\nu}$, where the mostly plus convention is used for the metric tensor (so that $u_{\mu}u^{\mu} = -1$).

Throughout the exercise, c = 1 and the x-dependence of fields is not written.

The fundamental equation of motion implies *automatically* entropy conservation, $\partial_{\mu}(su^{\mu}) = 0$. Using thermodynamic relations from question **i**. of the previous exercise, show that in a perfect relativistic fluid the temperature evolves according to the equation

$$u^{\mu}\partial_{\mu}(Tu^{\nu}) = -\partial^{\nu}T.$$
(4)

Deduce from the latter and from a result from exercise 14.ii. the equation

$$u^{\mu}\partial_{\mu}u^{\nu} = -c_s^2 \frac{\nabla^{\nu}s}{s},\tag{5}$$

where $\nabla^{\nu} \equiv \Delta^{\nu\mu} \partial_{\mu}$. How can you interpret this equation?

¹The equations take the same for in the non-relativistic and the relativistic cases.

 $^{^{2}}$ Note that these are the volume densities, not the specific densities used in some textbooks.