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Solution to sheet 7

Discussion topic: Relativistic �uid dynamics: what are the fundamental equations? Which further

ingredients are needed to model a speci�c system? Which assumption(s) underlie the description?

The fundamental equations of relativistic �uid dynamics are the conservation of the currents and

the energy-momentum tensor conservation equation.

In order to model a speci�c system one needs at least the equation of state which is a relation

between the pressure, the energy density and the chemical potentials in the most general case. Other

ingredient might be the transport coe�cients and an initial state.

The assumptions made are mainly that the system can be described as a �uid in the sense that

one can de�ne cells in which local equilibrium exists and therefore the temperature can be de�ned and

all thermodynamic properties. This cells must be small enough such that gradients can be neglected.

Other assumptions might be using ideal hydrodynamics.

14. Local thermodynamics

In your Statistical Physics lectures, thermodynamics and in particular the fundamental thermody-

namic relations were formulated for extensive quantities, as e.g.

U = TS − PV +
∑
a

µaNa , dU = T dS − P dV +
∑
a

µa dNa

for a system with several conserved quantum numbers. The purpose of the present exercise is to derive

the equivalent relations between the densities of the extensive thermodynamic parameters: energy

density1 ε, entropy density s, number densities na.2

i. The relation for the internal energy U translate at once in a relation for ε. Using the latter and the

relation for dU , show that the di�erentials of energy density and pressure obey

dε = T ds+
∑
a

µa dna , dP = sdT +
∑
a

na dµa (1)

respectively. The second of these relations is the local version of the Gibbs�Duhem relation.

Solution: The energy density and the internal energy are related by the work done. So basically if

we subtract the work (P dV) from the second expression we obtain:

dE = T dS +
∑
a

µa dNa,

which, if we divide by the volume becomes

dε = Tds+
∑
a

µa dna . (2)

For the pressure we could di�erentiate the �rst equation to �nd

dU = SdT + TdS − PdV − V dP +
∑
a

(Nadµa + µadNa) (3)

1The equations take the same for in the non-relativistic and the relativistic cases.
2Note that these are the volume densities, not the speci�c densities used in some textbooks.
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and by comparing it with the second equation and later dividing by the volume we �nd

dP = sdT +
∑
a

na dµa (4)

Notice that in the absence of conserved quantum numbers we have dε+ dP = Tds+ sdT → e+ p = Ts

ii. Focusing on the case with no conserved quantum number, deduce from the previous relations an

expression for the derivative

c2s ≡
∂P
∂ε

(5)

in terms of the entropy density s and the temperature T .
Assuming that c2s is a constant, in which case Eq. (5) is equivalent to the simple �equation of state�

P = c2sε, show the scaling behaviors

ε ∝ T 1+1/c2s , s ∝ T 1/c2s . (6)

What do you �nd in the case ε = 3P? Since this is the equation of state for an ideal gas of ultra-

relativistic particles, you may refresh your knowledge on the photon gas from your Statistical Physics

lectures.

Solution:

If there are no conserved quantum numbers the energy density and pressure become simply

dε = T ds , dP = sdT (7)

The speed of sound is precisely de�ned as how the pressure changes for a given change of energy

density, therefore we can write

c2s =
dP
dε

=
s

T

dT

ds

If c2sε = P the entropy becomes

ds

s
=

1

c2s

dT

T
→ s ∝ T 1/c2s .

The energy density (and similarly the pressure) can be obtained as

dP = sdT ∝ T 1/c2sdT → c2sε = P ∝ T 1+1/c2s .

In the case that c2s = 1/3 the solution becomes

s ∝ T 3 ε ∝ T 4 ∝ P

This are the typical results used for many applications as for modeling heavy-ion collisions for ex-

ample (at least up to a �rst approximation). If you want to do better then you use an equation of state

provided by lattice QCD calculations which is far more complicated but in principle it is also far more

realistic than an ideal gas.

15. Relativistic �uid dynamics

The dynamics of a perfect relativistic �uid without conserved charge is entirely governed by the

equation ∂µT
µν = 0 with Tµν = εuµuν + P∆µν , with uµ the 4-velocity and ∆µν ≡ uµuν + gµν , where

the mostly plus convention is used for the metric tensor (so that uµu
µ = −1).
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Throughout the exercise, c = 1 and the x-dependence of �elds is not written.

The fundamental equation of motion implies automatically entropy conservation, ∂µ(suµ) = 0. Using
thermodynamic relations from question i. of the previous exercise, show that in a perfect relativistic

�uid the temperature evolves according to the equation

uµ∂µ(Tuν) = −∂νT. (8)

Deduce from the latter and from a result from exercise 14.ii. the equation

uµ∂µu
ν = −c2s

∇νs
s
, (9)

where ∇ν ≡ ∆νµ∂µ. How can you interpret this equation?

Solution:

Tµν = (e+ P )uµuν + Pgµν = Tsuµuν + Pgµν = (suµ)(Tuν) + Pgµν

Using the conservation equations of the energy-momentum tensor we �nd

∂µT
µν = suµ∂µ(Tuν) + Tuν∂µ(suµ) + ∂νP = suµ∂µ(Tuν) + ∂νP = 0

From the thermodynamics relations we have deduced before we have dP = sdT → ∂νP = s∂νT.
Therefore,

suµ∂µ(Tuν) = −s∂νT → uµ∂µ(Tuν) = −∂νT

We will now rewrite the above equation making use of c2s = s
T
dT
ds .

First we expand the left hand side ,

uµuν∂µT + Tuµ∂µu
ν = −∂νT

Next we rearrange some terms as

Tuµ∂µu
ν = −∂νT − uµuν∂µT = −(gµν∂µ + uµuν∂µ)T = −∇νT

uµ∂µu
ν = −∇

νT

T

Lastly we introduce the entropy to �nd

uµ∂µu
ν = −c2s

∇νs
s
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