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Solution to sheet 6

12. A toy model of multiparticle correlations and cumulants

The purpose of this exercise is to illustrate the meaning of the cumulants of multiparticle azimuthal

averages on a simple example of particle emission with two- or three-particle correlations. Throughout

the exercise, 〈· · ·〉 denotes an average over particles and events (in two successive steps).

i. Two-particle correlations

Consider �rst a set of events, such that in each event exactly M particles are emitted as follows:

an angle ΨR and M/2 other angles φj are chosen randomly with an isotropic distribution. Then for

each j = 1, 2, . . . ,M/2, two particles (labeled j and M/2 + j) are emitted with the same azimuth

ϕj = ϕM/2+j = φj .

a) What is the value of the anisotropic �ow coe�cients vn =
〈
ein(ϕj−ΨR)

〉
(for any n ∈ N∗)? Same

question for the single- and two-particle averages
〈
einϕj

〉
and

〈
ein(ϕj+ϕk)

〉
with j 6= k.

Hint : No explicit calculation is needed!

Solution:

We want to compute vn =
〈
ein(ϕj−ΨR)

〉
, however, since the angles of the pairs are isotropically

distributed and the reaction plane angles are also isotropic this will give zero and equivalently for the

single and two particles averages.

Just as an example we can perform one of them explicitly

vn =
〈

ein(ϕj−ΨR)
〉
particles,events

∝
∑

events

∑
particles

einϕje−inΨR = 0.

The above equation is not fully true. If the number of particles is �nite one might get that the aver-

age over particles is di�erent than zero for a given event, but when averaging over events it will give zero.
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b) Compute for any n ∈ N∗ the two-particle average
〈
ein(ϕj−ϕk)

〉
with j 6= k. (Hint : You may want

to distinguish the two cases |j − k| 6= M/2 and |j − k| = M/2 and count how often each of these two

possibilities occur in a given event).

De�ne the two-particle azimuthal cumulant as cn{2} ≡
〈
ein(ϕj−ϕk)

〉
−
〈
einϕj

〉 〈
e−inϕk

〉
and a �ow

estimate vn{2} by vn{2}2 ≡ cn{2}. What do you �nd for vn{2}?

Solution: Now we compute
〈
ein(ϕj−ϕk)

〉
j 6=k

. For the case |j − k| 6= M/2 this will give zero since

one again the two angles are isotropically distributed. Therefore, just the case |j − k| = M/2 has to be

considered.

Hence, 〈
ein(ϕj−ϕk)

〉
|j−k|=M/2

=< e0 >=
1

M(M − 1)
M =

1

M − 1
≈ 1

M

where the number of pairs is Npairs = M(M − 1) and for each particle there is another particle that

is correlated with this one. (You might have in mind Npairs = N(N−1)
2 from statistical physics but the

factor 2 is not there because it corresponds to a system of indistinguishable particles).

The two particle azimuthal cumulant cn{2} ≡
〈
ein(ϕj−ϕk)

〉
−
〈
einϕj

〉 〈
e−inϕk

〉
is easy to compute

since the we have already computed the �rst term and the other two are zero as we have showed before.

An estimation to the �ow is vn{2}2 ≡ cn{2} which leads to

vn{2} =
1√

M − 1
.

This means that there will be anisotropic �ow coe�cients even if there should not be any since particles

are generated isotropically. We have seen before (part a ) that vn = 0 but with the cumulants method

all vn{2} get a non-zero contribution usually referred as non-�ow e�ects. Notice that such contribution

vanishes in the limit M →∞.

c) Compute for any n ∈ N∗ the four-particle average
〈
ein(ϕj+ϕk−ϕl+ϕp)

〉
where the four particles are

all di�erent. De�ne the four-particle azimuthal cumulant as

cn{4} ≡
〈

ein(ϕj+ϕk−ϕl−ϕp)
〉
−
〈

ein(ϕj−ϕl)
〉〈

e−in(ϕk−ϕp)
〉
−
〈

ein(ϕj−ϕp)
〉〈

e−in(ϕk−ϕl)
〉

and a �ow estimate vn{4} by vn{4}4 ≡ −cn{4}. What do you �nd for vn{4}? Can you justify the

de�nition of cn{4}? (why are there no extra terms?)

Solution:

The four-particle azimuthal cumulant has a lengthy form but we know the last terms since we have

just computed them before. Using that information we can write

cn{4} =
〈

ein(ϕj+ϕk−ϕl−ϕp)
〉
− 2

M2

We will compute
〈
ein(ϕj+ϕk−ϕl−ϕp)

〉
. Again many cases will not give any contribution. We know that

only the cases where |j+k−l−p| = M and at the same time |j−l| = M/2 or |j−p| = M/2 will contribute.
That means the four particles belong to two pairs where each pair contains one positive and one negative

sign. First, the number of quadruplets we can create are Nquadrup = M(M − 1)(M − 2)(M − 3) ≈M4.
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We are left with〈
ein(ϕj+ϕk−ϕl−ϕp)

〉
=

1

M4

∑
j,k,l,p;j 6=k 6=l 6=p

ein(ϕj+ϕk−ϕl−ϕp) =
1

M4
M(M − 2) · 2 · 1 ≈ 2

M2

where the sum gives M particles which for each particle there are (M-2) other particles that have a

di�erent angle and then for each of these two particles there are two particles that have and angle equal

to the one of the �rst two and one particle is left that closes the two pairs. (Try to do it by yourself

and argument it).

If you trust the above calculations the four-particle azimuthal cumulant and the associated �ow

read as

cn{4} =
2

M2
− 2

M2
= 0; vn{4} = 0.

This is actually not a surprise since we are trying to compute the fourth particle cumulant but out

particle distribtuion is a two particle distribution (sort to speak) such that there are no fourth particle

correlations but only two particle correlations. This also explains why cn{4} is de�ned as it is de�ned

and it is not just de�ned as the �rst term. It is because otherwise it would NOT be zero even if there

were no four-particle correlations in the system.

ii. Three-particle correlations

(optional: estimate �rst if you will be able to solve the following in a quarter of hour or less)

Assume now that each event consists of M/3 isotropically distributed triplets of particles with the

same azimuth ϕj = ϕM/3+j = ϕ2M/3+j = φj � generalizing the setup of question i..

Repeat the calculations of questions i.b) and i.c) for the new setup.

Solution:

Part c) is easy to answer, since the system has three-particles correlation, the fourth-particle cu-

mulant would be zero as discussed before. Part b) is similar to what we have done before and I will let

you explicitly compute it. The solution is

cn{2} =
〈

ein(ϕj−ϕk)
〉

=
2

M − 1
; vn{2} =

√
2

M − 1
.

Where the cumulant is now twice what it was in section b). Can you explain why?

(Answer: Because for each particle there are two particles that are correlated with that one mean-

while in the other case for each particle there was one that was correlated with it. This explains the

factor two. )

13. Momentum conservation

Consider M particles such that the sum of their (transverse) momenta vanishes:

p1 + p2 + · · ·pM = 0. (1)

For simplicity, we assume that all momenta have the same modulus: |p1| = · · · = |pM |.
Let ϕj denote the azimuthal angle of pj with respect to some �xed direction. Assuming that

the azimuths are isotropically distributed � which somehow implies M � 1 to make sense � leads

automatically to 〈cosϕj〉 = 0. Nevertheless, and possibly contrary to your intuition, 〈cos(ϕj − ϕk)〉
with j 6= k is non-zero. More precisely, show that Eq. (1) implies

〈cos(ϕj − ϕk)〉 '
M�1

− 1

M
(2)

and give a one-sentence physical interpretation of that result.
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Hint : You may want to square Eq. (1).

Solution:

As suggested we start by squaring Eq.(1) as follows

(p1+p2+· · ·pM )2 = (p2
1+...+p2

M )+2(p1 ·p2+...+pM−1 ·pM ) = Mp2
M +2(p1 ·p2+...+pM−1 ·pM ) = 0

(3)

We want to compute 〈cos(ϕi − ϕj)〉. Since we have a discrete distribution this reads as

〈cos(ϕi − ϕj)〉 =

〈
pxi p

x
j + pyi p

y
j

|pi||pj |

〉
i 6=j

=
1

Npairsp2
M

∑
i 6=j

pxi p
x
j +pyi p

y
j =

2

M(M − 1)p2
M

(p1·p2+...+pM−1·pM )

= − 1

M − 1
≈ − 1

M

Momentum conservation makes particles be correlated. One can think about it as: All of the

M particles can have any random momentum you want except the last one which has to ful�ll the

momentum conservation equation. Therefore one out of M particles is not "free" hence 1
M . As usual,

if M is large this correlations disappears.

4


