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Solutions to sheet 5

10. Ellipticity and quadrangularity
In exercise 7.i. you have computed the function d2TAA(b)/d2s ≡ TA(s − b/2)TA(s + b/2) as a

function of the impact parameter (modulus) b for the collision between two lead nuclei, with TA(s) the
nuclear thickness function. Using d2TAA(b)/d2s as a weight, compute and plot as a function of b the
�ellipticity� and �quadrangularity�

ε
(r)
2 ≡ −

〈
r2 cos(2θ)

〉
〈r2〉

=

〈
y2 − x2

〉
〈x2 + y2〉

, ε
(r)
4 ≡ −

〈
r4 cos(4θ)

〉
〈r4〉

, (1)

where (x, y) resp. (r, θ) are Cartesian resp. polar coordinates with the origin at the center of the overlap

region, while the impact parameter between the two Pb nuclei is assumed to be along the x-direction.

Hint : For ε
(r)
4 , it might be convenient to �nd the expression in Cartesian coordinates.

Solution:

On exercise 7 we computed d2TAA(b)/d2s ≡ TA(s − b/2)TA(s + b/2) as function of the impact

parameter (remember that the thickness function is nothing else than the integral of the density over

the longitudinal direction).

In this exercise we want to compute the ellipticity and quadrangularity of the system. For the

ellipticity we have

ε
(r)
2 =

〈
y2 − x2

〉
〈x2 + y2〉

=

∫
x,y(y

2 − x2)TA(s− b/2)TA(s + b/2)dxdy∫
x,y(y

2 + x2)TA(s− b/2)TA(s + b/2)dxdy

where, as usual, we will take the impact parameter along the x direction.
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Figure 1: Ellipticity of the system as function of the impact parameter up to b=15 fm.

Notice in �g.(1) that the ellipticity is always positive (for the plotted range) which is because we

"force" the system to be larger along the y direction. Also, for small impact parameters the elliptiicty

is close to zero because the overlap area approaches quite well to a circle which has no ellipticity. Notice
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that the ellpiticty does not always grow with the impact parameter bur rather it reaches a maximum

at around b=11 fm. Finally, it is nice to keep in mind a typical value for the ellipticity which we can

estimate to be around 0.25.

For the quadrangularity we have (remember that r4cos(4θ) = x4 + y4 − 6x2y2 )

ε
(r)
4 =

∫
x,y(−y

4 − x4 + 6x2y2)TA(s− b/2)TA(s + b/2)dxdy∫
x,y(y

4 + x4 + 2x2y2)TA(s− b/2)TA(s + b/2)dxdy
.
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Figure 2: Quadrangularity of the system as function of the impact parameter up to b=15 fm.

The quadrangularity is most of the time negative (don't be scared) and it's values are quite smaller

than the ellipticity which is normal since the system resembles an ellipse. If you want, you can go

further and compute higher powers of εn and you should see that the odd ones give zero and the even

ones become smaller as n increases.
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11. Two-particle probability distributions
In this exercise, we assume that it is possible to �nd a class of events in which the impact-parameter

direction ΨR is isotropically distributed, and such that at a �xed ΨR the single-particle azimuthal

probability distribution is given by

p1(ϕ|ΨR) =
1

2π

(
1 + 2v2 cos[2(ϕ−ΨR)]

)
, (2)

where v2 is independent of ΨR. We want to investigate two-particle probability distributions, that

describe the probability to have a �rst particle with azimuth ϕa and a second one with azimuth ϕb.

i. Azimuthally sensitive two-particle probability distribution

In the absence of (two-body) correlation, the two-particle probability distribution is simply the

product of single-particle distributions: p2(ϕa, ϕb |ΨR) = p1(ϕa |ΨR) p1(ϕb |ΨR). Express this probability
distribution in terms of the �pair angle� ϕpair ≡ 1

2(ϕa + ϕb) and the angle di�erence ∆ϕ ≡ ϕa − ϕb.

ii. Azimuthally insensitive two-particle probability distribution

a) In most experimental analyses, the two-particle distribution p2(ϕpair,∆ϕ|ΨR) is integrated over

ϕpair and averaged over ΨR. What do you obtain in that case? Let us denote p(∆ϕ) the resulting

distribution.

b) Can you without calculation tell how p(∆ϕ) looks like if besides v2 the single-particle probability

distribution p1(ϕ|ΨR) also contains higher harmonics v3, v4, and v5?

Plot your educated guess for p(∆ϕ), multiplied by a factor 2π, for −π
2 ≤ ∆ϕ ≤ 3π

2 with the values1

v2 = 0.041, v3 = 0.053, v4 = 0.034, and v5 = 0.012 � and compare your results with �gure 4 of the

ALICE Collaboration article Phys. Rev. Lett. 107 (2011) 032302.2

iii. Azimuthally sensitive two-particle probability distribution revisited

Let us go back to question i., again looking at p2(ϕpair,∆ϕ|ΨR) resulting from the single-particle

distribution (2). Focusing on the dependence on ϕpair − ΨR at �xed ∆ϕ, how could you de�ne �pair

�ow coe�cients� to characterize it? Which of these harmonic coe�cients are non-zero in the present

case? Can you give their expressions? (Beware: a mistake is quickly made!)

Solution:

We know the single particle probability (or similarly, the single particle distribution, Question: what

is the di�erence? ) and since we assume that the two particle probability is just the product of the

single particle probabilities then

p2(ϕpair,∆ϕ|ΨR) =
1

4π2
(1 + 4v2 cos(∆ϕ) cos[2(ϕpair −ΨR)] + 2v2

2(cos(2∆ϕ) + cos[4(ϕpair −ΨR)])

where we have used the change of variables as demanded.

It is common to be interested on the probability of �nding two particles separated by a certain

angle. In order to obtain that we have to average the probability over ΨR and integrate over ϕpair in
the form

p(∆ϕ) =
1

2π

∫
ΨR,ϕpair

1

4π2
(1+4v2 cos(∆ϕ) cos[2(ϕpair−ΨR)]+2v2

2(cos(2∆ϕ)+cos[4(ϕpair−ΨR)])dΨRdϕpair

1... taken without any guarantee!
2You can also �nd the plot at http://alice-publications.web.cern.ch/node/3879.
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This might look complicated but, if we rewrite the terms cos[2(ϕpair −ΨR]) and cos[4(ϕpair −ΨR)] by
using the expression cos(a− b) = cos a cos b+ sin a sin b then the integrals become trivial since most of

them vanish because
∫ 2π

0 cos(2ΨR) = 0 and similarly for the others.

All in all, what remains is

p(∆ϕ) =
1

2π
(1 + 2v2

2 cos(2∆ϕ))

If in the single particle probability there were higher harmonics (v3, v4, ...) we would obtain similar

results

p(∆ϕ) =
1

2π
(1 + 2v2

2 cos(2∆ϕ) + 2v2
3 cos(3∆ϕ) + ...)

where you can do the explicit calculation if you want ( I recommend you to do that at least once).

The above probability is the probability of �nding two particles with a certain angle di�erence.

Since it is a probability you can see that if integrated over the angle di�erence it gives 1, this is a good

test that shows that our calculation is not fully wrong.

For the next part we are asked to plot the probability we have obtained with certain values for the

anistropic �ow coe�cients and to compare the result with a publication by ALICE.

Figure 3: Two particle distribution compared to two particle azimuthal correlation measures in ALICE

for central collisions.

Both probabilities look quite similar which means that the choice of the anisotropic �ow coe�cients

is quite good. In the ALICE �gure you can see the e�ect of each �ow coe�cient by itself. Notice that

the largest is v3 and not v2 that is because the collisions are central. Also notice that in general two

particles will have an angle di�erence of zero.

Last thing we have to do is to look again at the two particle distribution

p2(ϕpair,∆ϕ|ΨR) =
1

4π2
(1 + 4v2 cos(∆ϕ) cos[2(ϕpair −ΨR)] + 2v2

2(cos(2∆ϕ) + cos[4(ϕpair −ΨR)]).
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In this case we assume that the angle di�erence is constant and we want to characterize the dis-

tribution with respect to ϕpair −ΨR. This means that we have to Fourier expand the the two particle

distribution as it was done for the single particle distribution but this time the expansions is respect to

ϕpair −ΨR. That means the following,

p2(ϕpair|∆ϕ,ΨR) =
1

4π2
(1 + 4v2 cos(∆ϕ) cos[2(ϕpair −ΨR)] + 2v2

2(cos(2∆ϕ) + cos[4(ϕpair −ΨR)])

= α(1 + 2v′2 cos[2(ϕpair −ΨR)] + 2v′n cos[n(ϕpair −ΨR)])

(3)

where v′ are the new �ow coe�cients and we are at �xed ∆ϕ and α is a normalization constant.

We can easily see that the only two coe�cients that would be di�erent than zero would be v′2 and

v′4.
We can obtain α by averaging the probability over ΨR and integrating over ϕpair which gives

α =
1 + 2v2

2 cos(∆ϕ)

2π
.

We need to compute the expressions of the new �ow coe�cients. For a Fourier series they are

computed as

v′n ≡
∫
p2 cos(n(ϕpair −ΨR))∫

p2
=

2παv′n
2πα

= v′n

where we integrate over ϕpair and average over ΨR.

Hence, we obtain

v′2 = 2v2 cos(∆ϕ) v′4 = v2
2
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