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Solutions to sheet 11

Discussion topic: Hadrochemistry: what is strangeness enhancement? the idea of the statistical
model of hadron production?

Throughout the exercise sheet, a system of units such that the constants c, ~ and kB equal 1 is used.

22. Kaon-to-pion ratio
Consider a system of u, d, s quarks and their antiquarks, whose respective amounts are denoted

Nu, Nd, Ns and so on. This system is supposed to �hadronize� fully into a system of pions (π+, π−,
π0) and kaons (K+, K−, K0, K0), such that equal amounts of each species in a family are produced:
Nπ+ = Nπ− = Nπ0 and a similar equality among the four kaon species.

Express the ratio NK+/Nπ+ as a function of the numbers of quarks and antiquarks.

Solution:

We have three pions and four kaons, which quark content are:

π+ = ud̄ π− = dū π0 = uū+ dd̄ K+ = us̄ K− = sū K0 = ds̄ K̄0 = sd̄.

Since the kaon amounts per specie are the same (NK), and equivalently for pions (Nπ), we can count
the number of strange and anti-strange quarks, which is

Ns = NK̄0 +NK− = NK/2 Ns̄ = NK0 +NK+ = NK/2,

and similarly for up quarks we get

Nu = NK+ +Nπ+ +
Nπ0

2
= NK/4 +Nπ/2

where the factor 1/2 is because half of the π0 will have an up quark. Similar equations are obtained for
the remaining quarks.

All in all we get,

Ns = Ns̄ = NK/2 Nu = Nū = Nd = Nd̄ = NK/4 +Nπ/2.

The ratio NK+/Nπ+ will be

NK+/Nπ+ =
1
2Ns

1
3(2Nu −Ns)

which you can rewrite in many forms. Notice that if all quarks are equally abundant then we get
NK+/Nπ+ = 3

2 i.e. there are more kaons than pions. In general that is not the case since light quarks
are more abundant.

23. Canonical suppression factor
Fill the gaps in the lecture: on slides 27�30 of the �Hadrochemistry� lecture, a number of technical

calculations were left aside. Starting from the single-particle partition functions z+, z−, zs of K
+, K−

and a hadron species with strangeness S = s (hereafter: �hyperons�), compute the average number 〈Ns〉
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of hyperons in the grand canonical and the canonical ensembles and deduce the canonical suppression
factor of the hyperons.

Solution:

The results of this exercise are on the slides 27-30. What we want to do is to make the calculations
which are not there.

Let us being with the grand canonical ensemble. The grand partition function reads as

Ω =
∑

N+,N−,Ns

Z(N+, N−, Ns)λN+−N−+sNs

where λ is the fugacity and Z the partition function. For an ideal gas (slide 23) we have

Z(N+, N−, Ns) =
z
N+
+

N+!

z
N−
−
N−!

zNss
Ns!

Since we are in the g.c. ensemble the system can interchange particles with the reservoir. Therefore
(the sums run from 0 to in�nite),

Ω =
∑

N+,N−,Ns

z
N+
+

N+!

z
N−
−
N−!

zNss
Ns!

λN+−N−+sNs = eλz++
z−
λ

+zsλs ,

where
1

Ω

z
N+
+

N+!

z
N−
−
N−!

zNss
Ns!

λN+−N−+sNs

is the probability of having N+, N− and Ns particles in the system.
If we want to obtain < Ns > in the g.c. ensemble we have to compute the probability of having Ns

particles times Ns. That gives,

< Ns >=
1

Ω

∑
N+,N−,Ns

z
N+
+

N+!

z
N−
−
N−!

zNss
Ns!

λN+−N−+sNsNs =
1

Ω
eλz++

z−
λ

Ns=∞∑
Ns=0

zNss
Ns!

λsNsNs =

=
1

Ω
eλz++

z−
λ

Ns=∞∑
Ns=0

(zsλ
s)Ns−1

(Ns − 1)!
zsλ

s = zsλ
s

< Ns >g.c.= zsλ
s

For the canonical ensemble we have a di�erence, strangeness is conserved. We also assume that
total strangeness is zero which means that

N− = N+ + sNs

Similarly as before we can write the partition function as

Z(N+, N−, Ns) =
z
N+
+

N+!

z
N−
−
N−!

zNss
Ns!

=
z
N+
+

N+!

z
N++sNs
−

(N+ + sNs)!

zNss
Ns!

bu now we have used the relation between particles abundancies. You can choose any of the two
independent variables.
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Now we can sum as before, but before, a useful thing,

In(2x) =
∞∑
0

x2N+n

N !(N + n)!

Z =
∑
N+,Ns

Z(N+, N−, Ns) =
∑
Ns

zNss
Ns!

∑
N+

(z+z−)N++sNs/2

N+!(N+ + sNs)!
(z−/z+)sNs/2 =

=
∑
Ns

zNss
Ns!

(z−/z+)sNs/2IsNs(2
√
z+z−)

The above expression is complicated to sum. Anticipating a very smaller number Ns << 1, we keep
only the terms Ns = 0 and Ns = 1 in the partition function and assume that the latter is much smaller
than the former (from slide 29). We �nd,

Z = Io(2
√
z+z−) + (z−/z+)sNs/2zsIs(2

√
z+z−) ≈ Io(2

√
z+z−)

As we did before in the g.c. ensemble, we can compute now < Ns > in the canonical ensemble,
which leads to

< Ns >can.=

∑
Ns

zNss
Ns!

∑
N+

(z+z−)N++sNs/2

N+!(N++sNs)!
(z−/z+)sNs/2Ns

Z

One again the sum is too complicated so we compute it for Ns=0 and Ns=1 but for the �rst case it
vanishes, hence,

< Ns >can.=
(z−/z+)s/2zsIs(2

√
z+z−)

Io(2
√
z+z−)

Finally, the canonical suppression factor of the hyperons becomes

< Ns >can.
< Ns >g.c.

=
(z−/z+)s/2Is(2

√
z+z−)

Io(2
√
z+z−)λs

And, in the limit where there are few hyperons compared to Kaons (slide 28) the fugacity becomes
λ =

√
z−/z+ which leads to

< Ns >can.
< Ns >g.c.

=
Is(2
√
z+z−)

Io(2
√
z+z−)

which is smaller than one always and it becomes even larger as s increases.

24. Ratios of light nuclei in the statistical model

i) Calculate the ratio d : 3He : 4He of the yields of deuterons, 3He, and 4He nuclei in the statistical model
for T = 156.5 MeV and vanishing chemical potentials µB and µI3 (nuclear masses: md = 1.8756 GeV,
m3He = 2.8084 GeV, m4He = 3.7274 GeV).

Solution:

Important note: It was forgotten to specify that the spins of the particles are 1, 1/2 and 0 respec-
tively.

From the slides (slide 20) we can read the particle number density for a quantum gas. This is a
generalization to what we did on sheet 9 where we computed the same but without taking into an
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account quantum e�ects.

The density reads as,

n =
gTm2

2π2

∞∑
k=1

(±1)k

k
λkK2

(
km

T

)
,

where λ = e(µBB+µSS+...)/T is the fugacity which is zero for our case. You can see that the �rst term of
the sum is precisely what we deduced for a classical gas.

From here one just simply computes the expression numerically. The sum can be safely stopped
after a few k's. Remember that the degeneracy factors are 3,2 and 1 respectively.

The ratios become,
nd/nHe3 ≈ 333 nHe3/nHe4 ≈ 476

Figure 1: Particle distribution (primordial and total) for Pb-Pb at 2.76 TeV

ii) Plot the particle density n per spin degree of freedom as a function of the massm for T = 156.5 MeV:
a) taking quantum statistics into account; b) in the Boltzmann approximation; c) in the Boltzmann
approximation using the leading order of the large-argument approximation of the modi�ed Bessel
functions of the second kind [see exercise 19.iii)]. What do you conclude?

Solution:

Here we will plot the particle density as a function of the mass. But we will use three options, the
expression above there quantum statistics are accounted for, the Boltzmann approximation which is the
case k=1, and the expansion of a Bessel function as we did in sheet 9 keeping only the leading term.

Q: What do you conclude?
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Figure 2: particle density (in MeV3) for di�erent systems.

One should see that at large mass values all approaches basically converge, that means that the
typical Boltzmann distribution works well.

At low mass values things become funnier. The large mass approximations fails strongly which
makes sense. The Boltzmann distribution lies in the middle between the fermionic and bosonic ones.
Notice that the bosonic is the largest which is the typical boson condensation e�ect and the opposite
for fermions. As usual quantum e�ects are only important at low m/T values which is not the case for
the three particles we considered before which are considerably heavy (this is why we could stop the
sum without problems).
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