Tutorial sheet 1

Discussion topic: In which sense are quarks "free" in a quark-gluon plasma? How does this relate to QCD?

1. Collision kinematics

In a heavy-ion collision at a collider, the nuclei that collide move (along the z -axis) with velocities $+v$ and $-v$ with respect to the "laboratory frame" in which the detectors are at rest. For simplicity, a nucleus will be assimilated to a sphere of radius R.

i. What is the size ("diameter") of one of the nuclei along the z-axis from the point of view of an observer at rest in the laboratory?

When the nuclei collide, they fly through each other without being decelerated — to some extent, they are "transparent". How long does it take in the laboratory frame for the two nuclei to cross each other?

ii. At the Large Hadron Collider, lead nuclei — (rest) mass $m_{\text{Ph}} \simeq 194$ GeV, "radius" $R_{\text{Ph}} \simeq 6.6$ fm are accelerated to an energy $E \approx 522$ TeV each. How long does it take for the two Pb nuclei to cross each other? You may express your answer either in fm/c or in yoctoseconds (1 ys = 10^{-24} s). Why are the colliding nuclei often referred to as "pancakes"?

2. A useful set of coordinates

To describe the system created in a heavy ion collision, especially at high energies, it is customary to replace the time t and the "longitudinal" spatial coordinate z along the flight direction of the colliding nuclei by other, equivalent coordinates: the "proper time" τ and "spatial rapidity"^{[1](#page-0-0)} ς

$$
\tau \equiv \sqrt{t^2 - z^2} \quad , \quad \varsigma \equiv \frac{1}{2} \log \frac{t+z}{t-z} \text{ where } |z| < t,\tag{1}
$$

in a system of units in which $c = 1$. Implicit in this definition is that the nuclei met at $z = 0$ at time $t=0.$

i. Check that the relations defining τ and ζ can be inverted, yielding^{[2](#page-0-1)}

$$
t = \tau \cosh \varsigma \quad , \quad z = \tau \sinh \varsigma. \tag{2}
$$

(Hint: $\frac{1}{2} \log \frac{1+u}{1-u}$ has a simpler expression in terms of hyperbolic functions.)

ii. Draw on a space-time diagram — with t on the vertical axis and z on the horizontal axis — the lines of constant τ and those of constant ζ .

iii. What is the motion of an observer \mathcal{O}_ς at a constant finite ς with respect to (hereafter abbreviated: w.r.t.) an observer \mathcal{O}_0 at rest at $z = 0$? In particular, how is ς related to the velocity of \mathcal{O}_ς w.r.t. \mathcal{O}_0 ?

Consider now a third observer $\mathcal{O}_{\zeta'}$ at spatial rapidity ζ' w.r.t. \mathcal{O}_0 . Can you guess (no calculation!) what is the spatial rapidity of $\mathcal{O}_{\zeta'}$ w.r.t. \mathcal{O}_{ζ} — that is, the spatial rapidity of $\mathcal{O}_{\zeta'}$ you would obtain by using Lorentz coordinates comoving with \mathcal{O}_{ς} , and thus properly boosted along the z-direction w.r.t. the original (t, z) -coordinates of \mathcal{O}_0 ?

3. A problem of collider physics

This exercise should help you appreciate one of the difficulties faced by the people tuning the behavior of a collider to ensure that two beams of particles circulating in opposite directions meet at the desired point, inside a detector.

¹This is the L^AT_EX character **\varsigma**

²Note the analogy with polar coordinates (r, θ) !

Put your forearms parallel to each other, about 50 cm away from each other. Turn your hands inwards, and point your left and right forefingers — that's their job! — towards each other. Close your eyes (after reading the sentence till the end!) and move your hands inwards: how many attempts will you need until the tips of your forefingers meet "head on"?

At the LHC, the proton beams at the interaction points have a sub-millimeter transverse size. . .