The Color Glass Condensate

and
The High Energy Limit of QCD

A Vey High Energy Hadron

In the limit that Ep,q — oo for £ — 0O

A2 — id_N

TR2 dy

implies that as << 1 The typical transverse
momentum scale

>> Njop

p%w/\2 >>

2
Rhad

Very thin sheet because
of Lorentz contraction
Very large sheet because

g dx pr >> 1/Rhad

Resolution scale Az

is Az << 1/Rhad
and 1//\QCD
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Different Rapidity Definitions:

Momentum Space Rapidity:

1 (pt 2pT
y=—-—In|l— | =Iln|——
2 P MT

_ . (2Piha pt ) _ 1
=In (M—T + In = = Yhad — i1 (;)

Phad
Coordinate Space Rapidity:
1 rT 2T
y= —ln|— =ln<—>
2 xr— xr—
where 7 = /t2 — 22

Using the uncertainty principle z* ~ 1/pT

Yparticles ™ Yconstituent ™~ YBjorken ™ Yspace—time

All rapidities the same up to Ay~ 1

Can map momentum space
INto coordinate space!
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Distributions of Particles:

—

o @
. j Az << 1 Fm
b @ “

Longitudinal separation

y : between quarks and gluons
max Ymin _ e

largest p. smallest p in tube is big as
smallest Az largest Az Az — 0

Color source is random

Particles with ymaz > ¥ > Ymin act
as sources for fields with y,in > v

If the density of sources is big,
A.;l:z/) >>1
the sources become classical:

[Cga7 Qb] - ifachC << Q2

The current associated with this source of
color is
Ji = s+t5(x™) palar)

The §¥T is because pt is big.

The 6(z~) is approximate and localizes
the fields on the sheet ¢ = z.

The source pqg(x7) is random in color
on 2 dimensional sheet.
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sources:

The distribution of sources is in reality:
p(x™,xp) ~ (™)
where
plzr) = [dx™ p(z™,z7) = [dy p(y,z7) The
width Az~ = 1/pt .
Note that p is time, zt independent:
Glass

Color Glass Condensate

Yang Mill’s theory in presence of random
source:

[1dA][dplexp (Z’S[A +iJtA -5 dydsz‘i%’f’fo))

The Gaussian ansatz is
McLerran-Venugopalan model:
< pa(y, 1) pp(Y'y7) >=
895 (y — y"N6) (wr — yr)u(y)

u?(y) is the color charge squared per unit
areanych—l

Random Source < — > Color Glass ~ Spin
Glass
Incoherent sum <=> Glass
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Some Comments on CGC:

Theory is defined by a cutoff p;,"u-n

The sources arose from fields with pT > p$m
The dynamical fields exist for pt < p$in

Cutoff pxin is arbitrary
Can be changed => Renormalization
Group

So long as p-l_/p;)tm is not too small
the solution is classical field in presence of p
Find solution to
D, FW = J¥
and average physical F[A] over p
Big corrections ~ asln(p‘l'/p;l,;m)
if pt/pt. is too small
=> Renormalization Group

Solution to classical equation has A ~ 1/g.
The phase space density:

dN
d2$Tdyd2pT ~ < AA >V 1/043

Condensate
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Review of Light Cone Quantization:

Light cone Hamiltonian: P~
Light cone time; Xt
Light cone momentum; Pt
Light cone coordinate: X~

The Klein-Gordon Field:
(P2 —M2)p=0

2 2
. . M
The Hamiltonian is Pz~
2p+

Second Quantization:
S— { (8¢)2 1]\[2¢Q}
The canomcal momentum is:

Nz~ zr) = 5()_|_¢ — 8+¢ g_gb
M is on equal time zT surface!
Not independent of ¢
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Equal Time Commutation Relations:

Postulate: .
[Nz, 27), ¢y~ y1)] = 563 (z — y)
SO that'
8% [¢(x), p(y)] = 563 (= — y)
or

[p(2), d(9)] = Fe(z™ — y™)6Pap — yr)
These comngutation relations are realized by
$(2) = [ 335400 T) {7 a(p) + ¢P7al (p) }

where
[a¢(p), ab(q)] = 2pT596;;6(3) (p — q)

Only pT > 0 so only postive momentum
particles => vacuum trivial

QCD on the Light Cone:

Light Cone Gauge: Af{ =0
DyFW = —D;F'"t + DTF-T =0
so that

Dot A

- _ 1
A —W

The transverse fields are dynamical
degrees of freedom.

, . 3 . . o
Ay = | rydyr 1€ Pal(p) + e (p)
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The Gluon Content of a Hadron:

+
éip% =<h | a,T(p)a(p) | h >

which is the same as

ot .
AN = 20 < | A (p) Aa(—p) | b >=
+ .
(31:7)3G3a(pap; zt —ytT 0| h>

Phase space distribution known in terms
of propogators.

Solving the MV Moddl:

Strategy: Solve in simple gauge and rotate to
light cone gauge.
Simple gauge A~ = 0, since
Dy FH = 8 tp(x™, zp)
is solved by
A= 0 and
—V%Z"’ =5
The overline means quantities in A= =0
gauge.
Note that
p=Ul(x)pU(x)
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Solving the MV Model

Note that because the integration measure is
gauge invariant (we will have to fix up the
action a little!), the gauge rotation does not
affect physical gauge invariant quantitities.
Explicitly:

A = UTAFU + gUTaMU
so that
At =tyteto)

Or dgefining

_v%

Therefore:
UT(z) = Pexp {z'g ffo_ dz_a(z_,xT)}
We will choose a retarded boundary condition
79 — —oo0.
The fields in AT =0 gauge are therefore:
At =A—=0
Al = éUViUT
For =~ outside the range where the source
Sits:
Al = 0(z7)V ViV
where
Vi(z) = Pexp {z'g [ dz"a(z, a:T)}
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The Gluon Distribution and Saturation

Recall that:

+ . .
3’?}2 — (%]:r)3A7d(k7 $+)A3(—ka .’,U+)
where

Al (z,zt) = gU(x)viUT(x)

You can compute:

Nc2 11— ew%len(m%/\%CD)/4

2

< Al(z,2T)Al(y,2T) >=
7TCY5NC xT

In this equation, both x— and y— are outside
the range where the source sits. The
saturation momentum is:

> 2 — 20 2 charge2
Qs = 2rNeag [dz™p (z7) asareaX(NcQ—l)

Formula true only for zp << 1/Agcp

Also
Jda=p2(2™) = [yhadror dyp®(y)
so it is the total charge at all rapidities
greater than where we measure. This can
related to the gluon density by DGLAP and
that charge density, up to Casimir is gluon
density.
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The Gluon Distribution and Saturation

1__dN _ _ 2pt
TR2d%prdy — (2m)3
[ d3ze=PT < AL(0,zT)AL(z,2T) >

At small xp correlation function goes as

2 2
ln(mT)Qs — Q§
Qg asp%

At large x7, we have

1, _, (@)

asm%

1

& "Qq/p;)
1 dN
wR2 dyd2p_|_ saturation

region
perturbative
region
Nocp Qsat PT

1/as is condensation
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Gluon Distribution and Saturation

Q2 /p% — perturbative bremstrahlung
In(Q2/p2) — saturation

The fields are Lorentz boosted Coulomb

fields:
(6z7)2 >> 1/p, the fields cancel.
ln(x%) — 1/xp

Two powers of xp softer becomes two of pr.

Q2 can grow rapidly with energy!
In saturated region ~ In(Q?)

In perturbative tail, fast growth.
Repulsive gluon interactions =>
Growth of intrinsic pr
but new gluons are small.

2
2G(z,Q?) ~ [§ dpr il
~ mR2Q? saturation region
~ TR?Q? large Q
Q2 ~ charge?/area ~ R
xG ~ surface in saturation region
xG ~ volume in perturbative region

No Problem with Unitarity!
Cross section at fixed Q2 ~ zG.
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The Color Glass Fields

UviUT

/
/

Fit ~§(z7)
Fi= ~ 0
FiJ ~ 0O

Vvivi

Note that Fit = Fi0 4 piz:

ElB17z

density ~ 1/as

fields random

fields frozen in time
0.5in

fields not stringy
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Deep Inelastic Scattering:

>
High Energy Dipole Hadron at Rest

Low Momentum Pair
Infinite Momentum

Frame Hadron
Wavefunction

High Energy Hadron

For deep inelastic scattering:
< JK(xz)J¥(0) >
Can be used to compute structure functions:
Can also compute diffractive structure
functions.
Results in agreement with dipole picture.
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a_Fr [pa]

Geometric Scaling:

Tyep ~ Fo(z, Q%) /Q?

i : Obvious: Q% << Q2
e e \ True up to:

. : S 2 4 2

:|q= Q S Qsat//\

! - ] - TR -’

Obsereved scaling is consequence of BFKL
evolution and the Color Glass Condensate.
The two conspire together to generate
geometric scaling in an extended region.

Schildnecht and Surrow; Stasto,

Goloec-Biernat, and Kwieczinski; Iancu,

Itakura and McLerran; Mueller and
Triantafyllopoulos
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Froissart Bound and Saturation
ant(yab)

— Q%,(y,0)
o~ In2(E)?

2
+— /\QCD

b
Near the edge of the hadron:

Q2 (y,b) = Q2,4 (y, 0) F(b)

True for large @@ and large b.
At large b, F(b) ~ e Hb
so that a fixed Q2 Cross section solves

Q2% ~ Q2 (y)exp~Hl
This Qg4+ SOlves fixed Q BFKL
and is slightly different from the
Qsat IN the center of the hadron.
Requires b ~ ky.

Saturation of Froissart!
Kovner, Weidemann; Iance, Itakura and
McLerran
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