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High energy hadronic interactions in QCD
and applications to heavy ion collisions

V – Calculating observables in the CGC
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General outline

n Lecture I : Introduction and phenomenology

n Lecture II : Lessons from Deep Inelastic Scattering

n Lecture III : QCD on the light-cone

n Lecture IV : Saturation and the Color Glass Condensate

n Lecture V : Calculating observables in the CGC
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Lecture V : Calculating observables

n Field theory coupled to time-dependent sources

n Generating function for the probabilities

n Average particle multiplicity

n Numerical methods for nucleus-nucleus collisions

u Gluon production

u Quark production
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Introduction

n In the Color Glass Condensate framework, hadronic
projectiles are described by a bunch of color sources flying
at the speed of light :

Jµ = δµ+δ(x−)ρ(~x⊥)

n In the previous lecture, we have studied properties of the
statistical distribution W

Y
[ρ] of these sources, in particular its

evolution under changes of the rapidity Y

n Now, we focus on another aspect of the problem:

given the sources, how do we calculate observable
quantities for hadronic collisions ?
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Introduction

n The case of the interaction between a proton or nucleus
described by the CGC and an “elementary” probe is fairly
simple. The archetype of this situation is Deep Inelastic
Scattering (the elementary probe being a virtual photon)

n At lowest order, one simply considers the interaction with the
proton of a QQ fluctuation of the virtual photon :

n More complicated Fock states should in principle be considered as
well at higher orders :
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Introduction

n Interactions between two hadrons described by the CGC are
treated by coupling the fields to a source which is the sum of
two terms :

Jµ = δµ+δ(x−)ρ1(~x⊥) + δµ−δ(x+)ρ2(~x⊥)

n If one of the sources is weak (i.e. the corresponding hadron
has a parton density much smaller than the other hadron),
the problem is again rather easy to study

u In this case, one computes the transition amplitudes at
lowest order in the weak source, which is much easier
than keeping both of them to all orders

n In this lecture, I will consider only the collision of two very
dense hadrons, for which no such approximation is possible
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Introduction

n In short, our goal is to say something useful about this...
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Introduction

n From now on, we assume that j = j1 + j2, with j1 and j2 of
comparable strengths

n The sources can be as strong as 1/g in the saturated
regime: B corrections in (gj)n must be summed to all orders,
which makes the evaluation of physical quantities very
complicated – even at “leading order”

n In fact, very few physical quantities are calculable by simple
methods when this resummation is necessary, and it is
important to know which ones...

n To avoid encumbering the discussion with unessential (for
now) details, we first consider a scalar field theory with a φ3

coupling, coupled to a source j(x) :

L ≡
1

2
(∂µφ) (∂µφ) −

1

2
m2φ2 −

g

3!
φ3 + jφ



Scattering theory

l Introduction

l Power counting

l Asymptotic free fields

l In and out states, S-matrix

l Reduction formulas

l Perturbative expansion

l Vacuum-vacuum diagrams

Generating function

Average multiplicity

Gluon production

Quark production

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 9/62

Counting the powers of g
n Consider a diagram with :

u n
E

external lines
u n

I
internal lines

u n
V

vertices
u n

J
sources

u n
L

independent loops

n These numbers are related by :

3n
V

+ n
J

= n
E

+ 2n
I

n
L

= n
I
− n

J
+ 1

n Therefore, the order of the diagram in g and j is :

gn
V jn

J = gn
E

+2(n
L
−1)(gj)n

J

n After resummation of all the powers of gj, the order of a
diagram depends only on its number of loops and external
legs
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Counting the powers of h

n To calculate the order of a diagram in ~, remember that the
evolution operator is in fact exp(S/~), with :

S

~
=

∫

d4x

[

−
1

2
φ

� +m2

~
φ−

g

3!~
φ3 +

j

~
φ

]

n Therefore, the powers of ~ come as follows :
u a power of ~ for each propagator
u a power of 1/~ for each vertex
u a power of 1/~ for each source

n The order in ~ of a diagram is :

~
n

E
+n

I
−n

V
−n

J = ~
n

E
+n

L
−1

n When one resums the corrections in (gj)n, all the included
terms have the same order in ~
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Asymptotic free fields

n From the Heisenberg field operator φ(x), one can define two
free fields φin(x) and φout(x), which coincide with φ(x)

respectively at t = −∞ and t = +∞ :

φ(x) = U(−∞, x0)φin(x)U(x0,−∞)

φ(x) = U(+∞, x0)φout(x)U(x0,+∞)

with U(t2, t1) ≡ P exp i

∫ t2

t1

d4x Lint(φin/out(x))

n These free fields have a simple Fourier decomposition :

φin/out(x) =

∫

d3~k

(2π)32Ek

[

ain/out(~k)e−ik·x + a†in/out(
~k)e+ik·x

]

n The in and out creation/annihilation operators are related by :

a†out(~k) = U(−∞,+∞)a†in(~k)U(+∞,−∞)

aout(~k) = U(−∞,+∞)ain(~k)U(+∞,−∞)
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In and out states, S-matrix
n To the in and out creation/annihilation operators, one

associates in and out states :

vacuum state : |0in〉, |0out〉

1-particle states : |~pin〉 = a†in(~p)|0in〉

|~pout〉 = a†out(~p)|0out〉

n From the relationship between a†in and a†out, one gets :

|αin〉 = U(+∞,−∞)|αout〉 for any state α

n U(+∞,−∞) is the S-matrix. Indeed :

Sβα ≡
〈

βout

∣

∣αin

〉

=
〈

βin

∣

∣S
∣

∣αin

〉

=
〈

βin

∣

∣U(+∞,−∞)
∣

∣αin

〉

u Even if the fields are not self-interacting, the S-matrix differs from
1 because of the source j : particles can scatter off the external
field. If j is time-dependent, it can even create particles
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Reduction formulas

n In order to express transition amplitudes in terms of field
operators, we need the following relations :

ain/out(~k) = i

∫

d3~x eik·x
[

∂0 − iEk

]

φin/out(x)

n Production of a single particle :

〈

pout

∣

∣0in

〉

=
1

Z1/2

∫

d4x eip·x (�x+m2)
〈

0out

∣

∣φ(x)
∣

∣0in

〉

n Production of a two particles :
〈

~p~qout

∣

∣0in

〉

=
1

Z

∫

d4x d4y eiq·yeip·x

×(�x+m2)(�y+m2)
〈

0out

∣

∣Tφ(x)φ(y)
∣

∣0in

〉
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Perturbative expansion

n In order to calculate
〈

0out

∣

∣Tφ(x1) · · ·φ(xn)
∣

∣0in

〉

in
perturbation theory, we must write :

〈

0out

∣

∣Tφ(x1) · · ·φ(xn)
∣

∣0in

〉

=

=
〈

0in

∣

∣U(+∞,−∞)TU(−∞, x0
1)φin(x1)U(x0

1, x
0
2) · · ·

· · ·U(x0
n−1, x

0
n)φin(xn)U(x0

n,−∞)
∣

∣0in

〉

=
〈

0in

∣

∣Tφin(x1) · · ·φin(xn)ei
∫+∞

−∞
d4xLint(φin)

∣

∣0in

〉

n Now that everything has been rewritten in terms of the free
field φin, it is just a matter of expanding the exponential to
the desired order

n Note that this expansion generates vacuum-vacuum
diagrams, whose sum appears as a multiplicative prefactor.
If j = 0, the sum of the vacuum-vacuum diagrams,
〈

0out

∣

∣0in

〉

, is a pure phase and can be disregarded from
squared amplitudes. This is not the case here



Scattering theory

l Introduction

l Power counting

l Asymptotic free fields

l In and out states, S-matrix

l Reduction formulas

l Perturbative expansion

l Vacuum-vacuum diagrams

Generating function

Average multiplicity

Gluon production

Quark production

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 15/62

Vacuum-vacuum diagrams
n A source j(x) that describes a single projectile does not

produce particles. Indeed, it is static in the rest-frame of this
projectile, and therefore can only have space-like modes

n A source j(x) ≡ j1(x) + j2(x) describing two projectiles
moving in opposite directions can produce particles

n If the transition amplitudes
〈

~p · · ·out

∣

∣0in

〉

are non-zero, then
the vacuum-to-vacuum transition amplitude

〈

0out

∣

∣0in

〉

is non
trivial. Indeed,

∑

α

∣

∣

〈

αout

∣

∣0in

〉∣

∣

2
= 1 (unitarity)

implies
∣

∣

〈

0out

∣

∣0in

〉∣

∣

2
< 1 if at least one of the

〈

~p · · ·out

∣

∣0in

〉

is
non-zero

n On the contrary, when j(x) cannot produce particles, then
the vacuum-to-vacuum amplitude is a pure phase
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Vacuum-vacuum diagrams

n The sum of all the vacuum-vacuum diagrams in
〈

0out

∣

∣0in

〉

is
equal to the exponential of the sum of the connected ones

〈

0out

∣

∣0in

〉

= ei
∑

conn V

n Let us denote :

i j = G = -i g = 

n The perturbative expansion of i
∑

conn V starts with :

+ + + + . . .1
2

1
6

1
8

1
8

Note : each graph Γ comes with a symmetry factor 1/SΓ, where SΓ

is the order of its symmetry group

n Note :
〈

0out

∣

∣0in

〉

can be seen as a generating functional :

〈

0out

∣

∣Tφ(x1) · · ·φ(xn)
∣

∣0in

〉

=
δ

iδj(x1)
· · ·

δ

iδj(xn)

〈

0out

∣

∣0in

〉
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Definitions
n The probability of producing exactly n particles in the

collision of the two hadrons (in addition to the fragments of
the incoming hadrons) is given by :

Pn =
1

n!

∫

d3~p1

(2π)32E1
· · ·

d3~pn

(2π)32En

∣

∣

〈

~p1 · · ·~pnout

∣

∣0in

〉∣

∣

2

n One can define a generating function : F (x) ≡
+∞
∑

n=0

Pn e
nx

n The sum of all the Pn must be 1, hence F (0) = 1

n From F (x), it is very easy to obtain the moments of the
distribution :

〈

np〉 =

+∞
∑

n=0

np Pn = F (p)(0)

n Note : connected moments, e.g.
〈

n2
〉

−
〈

n
〉2, are obtained by

differentiating ln(F (x)) instead of F (x)



Scattering theory

Generating function

l Definitions

l Probability Pn

l Action of D[j+,j-]

l Cutting rules

l Interpretation of F(x)

l Multiplicity distribution

l Calculation of the moments

Average multiplicity

Gluon production

Quark production

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 18/62

Probability Pn
n Denote exp(iV [j]) the sum of all vacuum-vacuum diagrams
n The reduction formula can be written as :

〈

~p1 · · ·~pnout

∣

∣0in

〉

=
1

Zn/2

∫

[

n
∏

i=1

d4xi e
ipi·xi (�i +m2)

δ

iδj(xi)

]

eiV [j]

and we have Pn =
1

n!
Dn[j+, j−] eiV [j+] e−iV ∗[j−]

∣

∣

∣

j+=j−=j

with

D[j+, j−] ≡
1

Z

∫

x,y

G0
+−(x, y) (�x +m2)(�y +m2)

δ

δj+(x)

δ

δj−(y)

G0
+−(x, y) ≡

∫

d3~p

(2π)32Ep
eip·(x−y)

n Therefore, we have :

F (x) = eexD[j+,j−] eiV [j+] e−iV ∗[j−]
∣

∣

∣

j+=j−=j
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Action of D[j+,j-]

n Action of D[j+, j−] :

∫

x,y

G0
+−(x, y) (�x +m2)(�y +m2)

δ

δj+(x)

δ

δj−(y)
V[j+] V*[j-]

=

∫

x,y

G0
+−(x, y) (�x +m2)(�y +m2) V[j+] V*[j-]

x y

=

∫

x,y

G0
+−(x, y) V[j+] V*[j-]

x y

= V[j+] V*[j-]

G0
+-
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Cutting rules

n In order to interpret F (x) in terms of diagrams, we need to
discuss the “cutting rules” that give the imaginary part of a
diagram

n Decompose the free time ordered propagator, G0
++, as :

G0
++(x, y) = θ(x0 − y0)G0

−+(x, y) + θ(y0 − x0)G0
+−(x, y)

n Define also :

G0
−−(x, y) ≡ θ(x0 − y0)G0

+−(x, y) + θ(y0 − x0)G0
−+(x, y)

n Consider a diagram in i
∑

conn V , before performing the
space-time integrations : iV (x1 · · ·xn). The xi are the
locations of the sources j and vertices g. For instance :

iV (x1, x2, x3, x4) =
x1

x2

x3

x4



Scattering theory

Generating function

l Definitions

l Probability Pn

l Action of D[j+,j-]

l Cutting rules

l Interpretation of F(x)

l Multiplicity distribution

l Calculation of the moments

Average multiplicity

Gluon production

Quark production

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 21/62

Cutting rules

n The diagrams iV are made only of the propagator G0
++

n For each diagram iV (x1 · · ·xn), construct 2n diagrams
iVε1···εn

(x1 · · ·xn) where εi is a sign attached to the vertex i :
u Connect a vertex of type ε to a vertex of type ε′ by G0

εε′

u For vertices of type −, substitute i g → −i g, i j → −i j

n Largest time equation : if x0
i is the largest time in the

diagram :

iV···εi···(x1 · · · xn) + iV···−εi···(x1 · · ·xn) = 0

(the indices hidden in the dots are the same for both terms)

n Therefore, the sum of all the iVε1···εn
is zero :

∑

{εi=±}

iVε1···εn(x1 · · · xn) = 0

(group the terms in pairs, and use the previous result)
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Cutting rules

n In momentum space, the propagators G0
εε′ read :

G0
++(p) =

i

p2 −m2 + iε
G0

−−(p) =
[

G0
++(p)

]∗

G0
−+(p) = 2πθ(p0)δ(p2 −m2) G0

+−(p) = 2πθ(−p0)δ(p2 −m2)

n Therefore, iV++···+ is the original diagram and iV−−···− is its
complex conjugate

n By isolating these two terms from the sum over the 2n terms,
we get :

2 ImV =
∑

{εi=±}′

iVε1···εn

where the prime indicates that the sum over the εi’s does not have
the ++ · · ·+ and −− · · ·− terms
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Cutting rules

n For each term in
∑

{εi=±}′ iVε1···εn
, draw a line (“cut”)

separating the + from the − vertices

n The simplest terms in 2 Im
∑

conn V are given by :
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n Cuts through vacuum-vacuum diagrams are non-zero
because of the coupling to the source j

n A cut going through r propagators will be called a r-particle
cut
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Interpretation of F(x)
n The generating function has the following interpretation :

F (x) is the sum of all the cut vacuum-vacuum diagrams (including the
terms with only + or only −), in which each term is weighted by a power
of ex equal to the number of particles on the cut

n Note : this implies automatically that F (0) = 1
(from the largest time equation)

n Let us denote br/g2 the sum of all the r-particle cut
connected vacuum-vacuum diagrams. Then, we have :

ln(F (x)) =

+∞
∑

r=1

br
g2

(erx − 1)

n This leads to the following formula for the connected moment
of order p :

〈

np〉

conn
=

dp

dxp
ln(F (x))|x=0 =

+∞
∑

r=1

rp br
g2
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Interpretation of F(x)

n Lowest order diagrams in b1/g2, b2/g2, b3/g2 :

b1
g2

=
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Multiplicity distribution

n From the generating function, one obtains the following
formula for the probability of producing n particles :

Pn = e−
∑

r br/g2
n
∑

p=1

1

p!

∑

α1+···+αp=n

bα1 · · · bαp

g2p

u Note : in this formula, p is the number of disconnected
subdiagrams producing the n particles, and αi is the number of
particles produced in the i-th subdiagram

n This is not a Poisson distribution

n In order to have a Poisson distribution, we would need :

br = 0 for r ≥ 2

i.e. all the particles produced in separate subdiagrams
(if a subdiagram can produce more than one particle, this
introduces correlations)
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Multiplicity distribution
n Example : contribution to P11 with a bit of b5 and b6 :

n At tree level, all the disconnected graphs are of order 1/g2

B therefore, no truncation is possible
n The uncut vacuum-vacuum diagrams on both sides exponentiate

into : exp(i
∑

conn V ) exp(−i
∑

conn V
∗) = exp(−

∑

r br/g
2)
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Multiplicity distribution
n Assume for a moment that we know the generating function
F (x). We can get the probability distribution as follows :

Pn =
1

2π

∫ 2π

0

dθ e−inθ F (iθ)

Note : this is trivial to evaluate numerically by a FFT :

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 1e-04

 0.01

 1

 0  500  1000  1500  2000

P n

n

Poisson distribution :   F(x) = exp( n (exp(x)-1))

Other F(x) with the same average
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Multiplicity distribution

n So far, no practical method is known for calculating the
generating function F (x) given the current j,
not even at tree level...

n How are we ever going to calculate some physical quantities
in this theory?

n Even if exp(iV [j]) exp(−iV ∗[j]) is not calculable, we have :

eD[j+,j−] eiV [j+] e−iV ∗[j−]
∣

∣

∣

j+=j−=j
= 1

n Any quantity for which we can exploit this cancellation is
going to be much easier to calculate :

u This is not the case of the individual Pn’s

u But this simplification happens for the moments
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Calculation of the moments

n The formula
〈

np
〉

conn
=
∑

r r
pbr/g

2 is very impractical

n Instead, go back to :

F (x) = eexD[j+,j−] eiV [j+] e−iV ∗[j−]
∣

∣

∣

j+=j−=j

n The average multiplicity is given by :
〈

n
〉

= F ′(0) = D[j+, j−] eiVc[j+,j−]
∣

∣

∣

j+=j−=j

where iVc[j+, j−] is the sum of all the cut connected
vacuum-vacuum diagrams, with j+ on the + side of the cut and j−
on the − side of the cut

n More explicitly, this reads :

〈

n
〉

=
1

Z

∫

x,y

G0
+−(x, y) (�x+m2)(�y+m2)

[

δiVc

δj+(x)

δiVc

δj−(y)
+

δ2iVc

δj+(x)δj−(y)

]
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Calculation of the moments
n The functional derivatives of iVc[j+, j−] with respect to j±

give Green’s functions that are calculated like cut diagrams,
but with external legs of type + or −. Let us denote :

Γ±(x) ≡
�x +m2

Z

δiVc

δj±(x)

∣

∣

∣

∣

j+=j−=j

Γ+−(x, y) ≡
(�x +m2)(�y +m2)

Z2

δ2iVc

δj+(x)δj−(y)

∣

∣

∣

∣

j+=j−=j

n Therefore, we have :

〈

n
〉

=

∫

x,y

ZG0
+−(x, y)

[

Γ+(x)Γ−(y) + Γ+−(x, y)
]

n Or, diagrammatically :
〈

n
〉

=
+

-
+ - +

n
〈

n
〉

is a sum of simply connected graphs
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Calculation of the moments
n The same method can be applied to the calculation of the

variance :

〈

n2〉−
〈

n
〉2

=
d2

dx2
ln(F (x))x=0

=
[

D[j+, j−] + D2[j+, j−]
]

eiVc[j+,j−]
∣

∣

∣

j+=j
−

=j

connected

n In terms of diagrams :

〈

n2〉−
〈

n
〉2

=
〈

n
〉

+

-

+

-
+

- +

+

-
+ 2

- +

+

-
+ 2

- +

- +
+

- +

+ -
+

+ - - +
+

- + + -
+

- + - +
+ 2
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Leading Order

n At leading order – i.e. O(1/g2) – the shaded blobs in the
formula for

〈

n
〉

must be evaluated at tree level (and the
second diagram does not contribute) :

+ -

n For all the vertices except the two which are labelled
explicitly, we must sum over the indices +/−

n We must also sum over all the topologies for the tree
diagrams on the left and on the right of the G0

+− propagator
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :

For ε = +,− , G0
ε+(x, y) −G0

ε−(x, y) = G0
R

(x, y)

where G0
R

(x, y) is the free retarded propagator, denoted x y

n Starting from the “leaves” of the trees, use this property
recursively to replace all the G0

±± propagators by retarded
propagators :

+/-

+ - + -

n After having done the same transformation on the other half
of the diagram, all the propagators except the intermediate
one have been replaced by retarded propagators
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :

For ε = +,− , G0
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ε−(x, y) = G0
R

(x, y)

where G0
R

(x, y) is the free retarded propagator, denoted x y

n Starting from the “leaves” of the trees, use this property
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :

For ε = +,− , G0
ε+(x, y) −G0

ε−(x, y) = G0
R

(x, y)

where G0
R

(x, y) is the free retarded propagator, denoted x y

n Starting from the “leaves” of the trees, use this property
recursively to replace all the G0

±± propagators by retarded
propagators :

+/-
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n After having done the same transformation on the other half
of the diagram, all the propagators except the intermediate
one have been replaced by retarded propagators
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :

For ε = +,− , G0
ε+(x, y) −G0

ε−(x, y) = G0
R
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where G0
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :
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where G0
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Leading Order
n The sum over the ± indices attached to the vertices in each

of the tree diagrams can be performed by noting that :

For ε = +,− , G0
ε+(x, y) −G0

ε−(x, y) = G0
R

(x, y)

where G0
R

(x, y) is the free retarded propagator, denoted x y

n Starting from the “leaves” of the trees, use this property
recursively to replace all the G0

±± propagators by retarded
propagators :

+/-

+ - + -

n After having done the same transformation on the other half
of the diagram, all the propagators except the intermediate
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Classical solution

n The classical equation of motion reads :
(

� +m2)φ(x) +
g

2
φ2(x) = j(x)

n The retarded solution of this equation, with the boundary
condition φ(x) = 0 when x0 → −∞, can be found iteratively
in g : φ = φ(0) + φ(1) + · · · , by rewriting the EOM as :

φ(x) =

∫

d4y G0
R

(x− y)
[

−i
g

2
φ2(y) + i j(y)

]

where G0
R

(x− y) is the retarded Green’s function for the operator
� +m2, normalized by :

(

�x +m2)G0
R

(x− y) = −i δ(x− y)

or, in momentum space, G0
R

(p) =
i

p2 −m2 + ip0ε
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Classical solution

n Order g0 :

φ(0)(x) =

∫

d4y G0
R
(x− y) i j(y)

n Order g1 :

φ(0)(x) + φ(1)(x) =

∫

d4y G0
R
(x− y)

[

−i
g

2
φ2

(0)(y) + i j(y)
]

i.e.

φ(1)(x) = −i
g

2

∫

d4y G0
R
(x− y)

[∫

d4z G0
R

(y − z) i j(z)

]2

n One can construct the solution iteratively, by using in the
r.h.s. the solution found in the previous orders
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Classical solution

n Therefore, the classical solution can be represented as :

+ + + +1
2

1
2

1
2

1
8

n The classical solution is given by the sum of all the tree
diagrams with retarded propagators. It resums all the powers
of g that are accompanied by a source j

n The quantity that appears in
〈

n
〉

LO
does not have the last

retarded propagator. Therefore, it is :

(�x +m2)φc(x)
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Classical solution

n Therefore, the classical solution can be represented as :
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2

1
2

1
2

1
8
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Classical solution
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Classical solution
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Classical solution
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Classical solution

n Therefore, the classical solution can be represented as :
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diagrams with retarded propagators. It resums all the powers
of g that are accompanied by a source j

n The quantity that appears in
〈

n
〉

LO
does not have the last

retarded propagator. Therefore, it is :

(�x +m2)φc(x)
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Leading Order (cont.)

n Finally, one gets
〈

n
〉

LO
in terms of the retarded solution φc of

the EOM :

Ep

d
〈

n
〉

d3~p

∣

∣

∣

∣

∣

LO

=
1

16π3

∣

∣(p2 −m2)φc(p)
∣

∣

2

n (p2 −m2)φc(p) is given by a 4-dim Fourier transform :

(p2 −m2)φc(p) = −

∫

d4x eip·x (�x +m2)φc(x)

n This formula is cumbersome in practice because it requires
to store the solution of the EOM at all times. Instead, write :

eip·x
[

∂2
x0

+ E2
p

]

φc(x) = ∂x0 e
ip·x [∂x0 − iEp]φc(x)

from which one can obtain :

(p2 −m2)φc(p) = lim
x0→+∞

∫

d3~x eip·x [∂x0 − iEp]φc(x)
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Next to Leading Order

n There are two types of corrections at NLO :

+

-
-+

n They both contribute at order g0. The first type of NLO
topologies would in fact be the leading contribution for quark
production
B we consider only this one in the following (but the other
one can be calculated as well)
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Next to Leading Order

n We need to calculate the sum of the following tree diagrams :

x y
- +

n One can perform a partial resummation of all the
sub-diagrams that correspond to the classical solution :

∑
trees
+/-

= ∑
trees

=

n Thus, we need the full tree level propagator G−+(x, y) in the
presence of the retarded background field φc. Note : the
classical field insertion is the same for the + and − indices
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Next to Leading Order

n We need to calculate the sum of the following tree diagrams :

x y
- +

n One can perform a partial resummation of all the
sub-diagrams that correspond to the classical solution :

∑
trees
+/-

= ∑
trees

=

n Thus, we need the full tree level propagator G−+(x, y) in the
presence of the retarded background field φc. Note : the
classical field insertion is the same for the + and − indices
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Next to Leading Order

n We need to calculate the sum of the following tree diagrams :

x y
- +

n One can perform a partial resummation of all the
sub-diagrams that correspond to the classical solution :

∑
trees
+/-

= ∑
trees

=

n Thus, we need the full tree level propagator G−+(x, y) in the
presence of the retarded background field φc. Note : the
classical field insertion is the same for the + and − indices
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Next to Leading Order

n The summation of all the classical field insertions can be
done via a Lippmann-Schwinger equation :

Gεε′(x, y) = G0
εε′(x, y)−ig

∑

η,η′=±

∫

d4z G0
εη(x, z)φc(z)σ

3
ηη′Gη′ε′(z, y)

n This equation is rather non-trivial to solve in this form,
because of the mixing of the 4 components of the
propagator. Perform a rotation on the ± indices :

Gεε′ → Gαβ ≡
∑

ε,ε′=±

UαεUβε′Gεε′

σ
3
εε′ → Σ

3
αβ ≡

∑

ε,ε′=±

UαεUβε′σ
3
εε′

n A useful choice for the rotation matrix U is U = 1√
2

(

1 −1

1 1

)
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Next to Leading Order

n Under this rotation, the matrix propagator and field insertion
become :

Gαβ =





0 G
A

G
R

G
S



 , Σ
3
αβ =





0 1

1 0





where G0
S
(p) = 2πδ(p2 −m2)

n The main simplification comes from the fact that G0
Σ

3 is the
sum of a diagonal matrix and a nilpotent matrix

n One finds that G
R

and G
A

do not mix, i.e. they obey the
equations :

G
R,A

(x, y) = G0
R,A

(x, y) − i g

∫

d4z G0
R,A

(x, z)φc(z)GR,A
(z, y)

n One can express G
S

in terms of G
R

and G
A

:

G
S

= G
R
∗G0

R

−1 ∗G0
S
∗G0

A

−1 ∗G
A
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Next to Leading Order
n In order to go back to G−+, invert the rotation :

G−+ =
1

2
[G

A
−G

R
+G

S
]

n Split G
R,A

into free propagators and a scattering matrix :

G
R,A

≡ G0
R,A

+G0
R,A

∗ T
R,A

∗G0
R,A

Note : the retarded/advanced scattering matrices T
R,A

obey :

T
R
− T

A
= T

R
∗
[

G0
R
−G0

A

]

∗ T
A

n Wrapping up everything, in momentum space, gives :

Ep

d
〈

n
〉

d3~p

∣

∣

∣

∣

∣

NLO

=
1

16π3

∫

d3~q

(2π)32Eq
|T

R
(p,−q)|2

B One has to obtain the retarded propagator in the classical
field φc, amputate the external legs, square and integrate
over the (on-shell) momentum at one end
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Next to Leading Order
n T

R
(p,−q) can be obtained from retarded solutions of the

EOM of a small fluctuation on top of φc

(

� +m2 + g φc(x)
)

η(x) = 0

n Start from Green’s formula for the retarded solution η(x) :

η(x) =

∫

d3~y G
R

(x, y)
↔

∂y0 η(y)

n From there, it is straightforward to verify that :

T
R

(p,−q) = lim
x0→+∞

∫

d3~x eip·x [∂x0 − iEp] η(x)

with η(x) = eiq·x when x0 → −∞

n In other words, one must solve the equation of propagation
of small fluctuations on top of the classical field, with a plane
wave as the initial condition
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Gluon production
Krasnitz, Venugopalan (1998), Lappi (2003)

n At tree level, the gluon spectrum is given directly by the
retarded solution of Yang-Mills equations :

Ep

d
〈

ng

〉

d3~p
=

1

16π3

∑

λ

∣

∣

∣

∣

lim
x0→+∞

∫

d3~x eip·x [∂x0 − iEp] ε(λ)
µ (~p)Aµ(x)

∣

∣

∣

∣

2

n The calculation is usually done in the gauge :

Aτ = x+A− + x−A+ = 0

u This gauge interpolates between two light-cone gauges : A− = 0

on the trajectory z = t and A+ = 0 on the trajectory z = −t

u This implies that the produced gauge field does not make the
currents J+, J− precess in color space

n In this gauge, it is easy to find the field at τ = 0+, and then let it
evolve according to the vacuum Yang-Mills equations (because the
currents are zero at τ > 0)
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Classical color field

n Space-time structure of the classical color field:

nucle
us 1

nucleus 2

z

t

1

32

4

u Region 1 : no causal relation to either nuclei
u Region 2 : causal relation to the 1st nucleus only
u Region 3 : causal relation to the 2nd nucleus only
u Region 4 : causal relation to both nuclei
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Classical color field

n Propagation through region 1:

z

t

B trivial : the classical field is entirely determined by the
initial condition, i.e.

Aµ = 0
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Classical color field

n Propagation through region 2:

z

t τ i

B the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+ = A− = 0 , Ai = θ(x−)
i

g
U1(~x⊥)∂iU†

1 (~x⊥)

with U1(~x⊥) = T+ exp ig

∫

dx+T a 1

∇
2
⊥

ρa
1(x+, ~x⊥)
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Classical color field

n Propagation through region 3:

z

t τ i

B the Yang-Mills equation can be solved analytically when
there is only one nucleus :

A+ = A− = 0 , Ai = θ(x+)
i

g
U2(~x⊥)∂iU†

2 (~x⊥)

with U2(~x⊥) = T− exp ig

∫

dx−T a 1

∇
2
⊥

ρa
2(x−, ~x⊥)
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Classical color field

n Propagation through region 4:

z

t τ iτ f

B one must solve numerically the Yang-Mills equations with
the following initial condition at τi = 0+ :

Ai(τ = 0, ~x⊥) =
i

g

(

U1(~x⊥)∂iU†
1 (~x⊥) + U2(~x⊥)∂iU†

2 (~x⊥)
)

Aη(τ = 0, ~x⊥) = −
i

2g

[

U1(~x⊥)∂iU†
1 (~x⊥) , U2(~x⊥)∂iU†

2 (~x⊥)
]



Scattering theory

Generating function

Average multiplicity

Gluon production

l Classical color field

l Results

Quark production

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 51/62

Energy per unit rapidity

n Time dependence of dE/dη:

0 0.5 1 1.5 2
τ (fm)

0

500

1000

1500

2000

dE
/d

η 
(G

eV
)
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Gluon spectrum

n Gluon spectra for 5122 and 2562 lattices:

0 1 2 3 4 5 6 7
~k/g

2µ

0

0.05

0.1

0.15

0.2

2~ k4 /(
g6 µ4 R

A
2 ) d

N
/d

2 k

u Lattice artifacts at large momentum (does not affect much the
overall number of gluons)

u Important softening at small k⊥ compared to pQCD
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Quark production

FG, Kajantie, Lappi (2004, 2005)

n The inclusive quark spectrum can be obtained from the
retarded propagator of the quark in the classical color field:

Ep

d
〈

nq

〉

d3~p
=

1

16π3

∫

d3~q

(2π)32Eq
|u(~p)T

R
(p,−q)v(~q)|2

n Alternate representation of the retarded amplitude:

u(~p)T
R

(p,−q)v(~q) = lim
x0→+∞

∫

d3~x eip·x u†(~p)ψq(x)

(i/∂x−g/A(x)−m)ψq(x) = 0 , ψq(x0, ~x) →
x0→−∞

v(~q)eiq·x
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Background field

n Space-time structure of the classical color field:

z

t

1

32

4
u Region 1: Aµ = 0

u Region 2: A± = 0,
Ai = i

g
U1∇

i
⊥U

†
1

u Region 3: A± = 0,
Ai = i

g
U2∇

i
⊥U

†
2

u Region 4: Aµ 6= 0

n Notes:
u In the region 4, Aµ is known only numerically
u We will have to solve the Dirac equation numerically as well
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Quark propagation

n Propagation through region 1:

z

t

B trivial because there is no background field

ψq(x) = v(~q)eiq·x
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Quark propagation

n Propagation through region 2:

z

t τ i

B Pure gauge background field

B ψ−
q

(τi) can be obtained analytically
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Quark propagation

n Propagation through region 3:

z

t τ i

B Pure gauge background field

B ψ+
q

(τi) can be obtained analytically
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Quark propagation

n Propagation through region 4:

z

t τ iτ f

B One must solve the Dirac equation :
[

i/∂ − g/A−m
]

ψq(τ, η, ~x⊥) = 0

B initial condition: ψq(τi) = ψ+
q (τi) + ψ−

q (τi)

(τi = 0+ in practice)
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Time dependence

n g2µ = 2 GeV , (*) g2µ = 1 GeV :

0 0.05 0.1 0.15 0.2 0.25
τ [fm]

0
10

0
20

0
30

0
dN

 / 
dy

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 300 MeV *



Scattering theory

Generating function

Average multiplicity

Gluon production

Quark production

l Background field

l Quark propagation

l Results

François Gelis – 2006 Lecture V/V – SPhT, Saclay, January 2006 - p. 60/62

Spectra for various quark masses

n g2µ = 2 GeV , τ = 0.25 fm :

0 1 2 3 4
q̂ [GeV]

0
5×

10
4

1×
10

5
2×

10
5

dN
/d

yd
2 q T

 [a
rb

itr
ar

y 
un

its
]

m = 60 MeV
m = 300 MeV
m = 600 MeV
m = 1.5 GeV
m = 3 GeV
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Mass dependence of dN/dy

n Number of quarks at τ = 0.25 fm :

0 0.5 1 1.5
m [GeV]

0
10

0
20

0
30

0
dN

 / 
dy

g2µ = 2 GeV
g2µ = 1 GeV
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g2mu dependence of dN/dy

n Number of quarks at τ = 0.25 fm :

0 0.5 1 1.5 2
g2µ [GeV]

0
10

0
20

0
30

0
dN

 / 
dy

m = 300 MeV
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