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High energy hadronic interactions in QCD
and applications to heavy ion collisions

II – Lessons from Deep Inelastic Scattering
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General outline

n Lecture I : Introduction and phenomenology

n Lecture II : Lessons from Deep Inelastic Scattering

n Lecture III : QCD on the light-cone

n Lecture IV : Saturation and the Color Glass Condensate

n Lecture V : Calculating observables in the CGC
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Lecture II : Lessons from DIS

n Kinematics of Deep Inelastic Scattering

n Structure functions

n Experimental facts

n Naive parton model

n Light-cone behavior of a free field theory

n Scaling violations

n Factorization
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Introduction to DIS

n Basic idea : smash a well known probe on a nucleon or
nucleus in order to try to figure out what is inside...

n Photons are very well suited for that purpose because their
interactions are well understood

n Deep Inelastic Scattering : collision between an electron and
a nucleon or nucleus, by exchange of a virtual photon

e-

p , A

n Variant : collision with a neutrino, by exchange of Z0, W±
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Kinematical variables

k
k’

P

θ

q





X

n Note : the virtual photon is spacelike: q2 ≤ 0

n Other invariants of the reaction :

ν ≡ P · q
s ≡ (P + k)2

M2
X

≡ (P + q)2 = m2
N

+ 2ν + q2

n One uses commonly : Q2 ≡ −q2 and x ≡ Q2/2ν

n In general M2
X
≥ m2

N
, and we have : 0 ≤ x ≤ 1

(x = 1 corresponds to the case of elastic scattering)
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DIS cross-section
n The simplest cross-section is the inclusive cross-section,

obtained by measuring the momentum of the scattered
electron and summing over all the hadronic final states X

E′ dσe−N

d3~k
′ =

∑

states X

E′ dσe−N→e−X

d3~k
′

E′ dσe−N→e−X

d3~k
′ =

∫
[dΦ

X
]

32π3(s−m2
N

)
(2π)4δ(P+k−k′−P

X
)
〈
|M

X
|2

〉
spin

M
X

=
ie

q2

[
u(~k

′
)γµu(~k)

] 〈
X

∣∣Jµ(0)
∣∣N(P )

〉

n In the amplitude squared appears the leptonic tensor :

Lµν ≡
〈
u(~k

′
)γµu(~k)u(~k)γνu(~k

′
)
〉

spin

= 2(kµk′ν + kνk′µ − gµν k · k′)

(the electron mass has been neglected)
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DIS cross-section

n The inclusive cross-section can be written as :

E′ dσe−N

d3~k
′ =

1

32π3(s−m2
N

)

e2

q4
4πLµνWµν

where Wµν is the hadronic tensor, defined as:

4πWµν ≡
∑

states X

∫
[dΦ

X
](2π)4δ(P + q − P

X
)

×
〈〈
N(P )

∣∣J†
ν(0)

∣∣X
〉〈
X

∣∣Jµ(0)
∣∣N(P )

〉〉

spin

n Wµν contains all the informations about the properties of the
nucleon under consideration that are relevant to the
interaction with the photon

n This object cannot be calculated perturbatively

n It obeys: qµWµν = qνWµν = 0 (conservation of e.m. current)
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X
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Structure functions

n For a (spin-averaged) nucleon, the most general form of Wµν

is:

Wµν = −W1gµν +W2
PµPν

m2
N

+W3εµνρσ
P ρqσ

m2
N

+W4
qµqν

m2
N

+W5
Pµqν

m2
N

+W6
qµPν

m2
N

u W3 = 0 for parity conserving currents (like e.m. currents)

u Wµν = Wνµ from parity and time-reversal symmetry
hence W5 = W6

u From the Ward identities qµWµν = qνWµν = 0, one gets:

W5 = −W2
P · q
q2

W4 = W1

m2
N

q2
+W2

(P · q)2
q4
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Structure functions

n Therefore, for interactions with a photon, we have:

Wµν = −W1

(
gµν − qµqν

q2

)
+
W2

m2
N

(
Pµ − qµ

P · q
q2

) (
Pν − qν

P · q
q2

)

n And the DIS cross-section in the nucleon rest frame reads:

dσe−N

dE′dΩ
=

α2
em

4m
N
E2 sin4(θ/2)

[
2 sin2(θ/2)W1 + cos2(θ/2)W2

]

where Ω is the solid angle of the scattered electron

n It is customary to define slightly rescaled structure functions:

F1 ≡W1 , F2 ≡ ν

m2
N

W2

n Note: F1 is proportional to the interaction cross-section
between the nucleon and a transverse photon
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Bjorken scaling

n Bjorken scaling : F2 depends very weakly on Q2

SLAC

x

F
2

0.90.80.70.60.50.40.30.20.10

0.7

0.6

0.5

0.4

0.3
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Longitudinal F

n F
L
≡ F2 − 2xF1 is quite smaller than F2 :

F2

FL

FL vs. F2 for Q2 = 20 GeV2

x

10.10.010.0011e-04

2

1.5

1

0.5

0
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Analogy with the e- mu- cross-section

n In terms of F1 and F2, the DIS cross-section reads:

dσe−N

dE′dΩ
=

α2
em

4m
N
E2 sin4 θ

2

[
2F1 sin2 θ

2
+
m2

N

ν
F2 cos2

θ

2

]

n It is instructive to compare it to the e−µ− cross-section:

dσe−µ−

dE′dΩ
=

α2
emδ(1 − x)

4mµE2 sin4 θ
2

[
sin2 θ

2
+
m2

µ

ν
cos2

θ

2

]

u If the constituents of the nucleon that interact in the DIS process
were spin 1/2 point-like particles, we would have:

2F1 =
m

N

mc

δ(1 − xc) , F2 =
mc

m
N

δ(1 − xc)

where mc is some effective mass for the constituent (comparable
to m

N
because it is trapped inside the nucleon) and

xc ≡ Q2/2q · pc with pµ
c the momentum of the constituent
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Analogy with the e- mu- cross-section

n If pµ
c = x

F
Pµ, then xc = x/x

F
, and:

2F1 ∼ δ(x− x
F

) , F2 ∼ δ(x− x
F

)

n The structure functions F1 and F2 would therefore not
depend on Q2, but only on x

n Conclusion : Bjorken scaling could be explained if the
constituents of the nucleon that are probed in DIS are spin
1/2 point-like particles

The variable x measured in DIS would have to be identified
with the fraction of momentum carried by the struck
constituent
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Naive parton model

n The historical parton model describes the nucleon as a
collection of point-like fermions, called partons

n A parton of type i, carrying the fraction x
F

of the nucleon
momentum, gives the following contribution to the hadronic tensor :

4πWµν
i =

∫
d4p′

(2π)4
2πδ(p′2)(2π)4δ(x

F
P + q − p′)

×
〈〈
x

F
P

∣∣Jµ†(0)
∣∣p′

〉〈
p′

∣∣Jν(0)
∣∣x

F
P

〉〉

spin

4πWµν
i = 2πx

F
δ(x

F
− x)

×e2i
[
−

(
gµν

−

qµqν

q2

)
+

2x
F

P · q

(
P µ

−qµ P · q

q2

)(
P ν

−qν P · q

q2

)]

n If there are fi(xF
)dx

F
partons of type i with a momentum fraction

between x
F

and x
F

+ dx
F

, we have

Wµν =
∑

i

∫ 1

0

dx
F

x
F

fi(xF
) Wµν

i

n One obtains the following structure functions :

F1 =
1

2

∑

i

e2i fi(x) , F2 = 2xF1
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x

F
P
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F
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x

F
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F
P
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Naive parton model
n This model provides an explicit realization of Bjorken scaling
n The relation F2 = 2xF1 implies that the cross-section

between a longitudinally polarized photon and the nucleon is
suppressed compared to that of a transverse photon
u The observation of this property provides further support of the

fact that the relevant constituents are spin 1/2 fermions
u If the partons were spin 0 particles, we would have

Wµν
i ∝ (2x

F
Pµ + qµ)(2x

F
P ν + qν)

and it is easy to check that this leads to F1 = 0 (σtransverse = 0)

n Caveats and puzzles :
u The parton model assumes that partons are free inside the

nucleon. How can this be true in a strongly bound state ?
u One would like to have a field theoretical description of what is

going on, including the effect of interactions, quantum
fluctuations, etc...
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Field theory point of view

n A nucleon at rest is a very complicated object...
n Contains fluctuations at all space-time scales smaller than its

own size
n Only the fluctuations that are longer lived than the external

probe participate in the interaction process
n The only role of short lived fluctuations is to renormalize the

masses and couplings
n Interactions are very complicated if the constituents of the

nucleon have a non trivial dynamics over time-scales
comparable to those of the probe
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Field theory point of view

n Dilation of all internal time-scales for a high energy nucleon
n Interactions among constituents now take place over

time-scales that are longer than the characteristic time-scale
of the probe
B the constituents behave as if they were free

n Many fluctuations live long enough to be seen by the probe.
The nucleon appears denser at high energy (it contains
more gluons)
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What would we learn ?

n The field theory that describes the interactions among
partons should be able to explain the evolution with x of the
parton distributions, since it comes from bremsstrahlung

n This field theory should also describe the evolution with Q2

(i.e. the deviations from Bjorken scaling), which is due to the
fact that the probe resolves more quantum fluctuations when
Q2 increases

n For the picture to be predictive, one should be able to prove
from first principles the factorization of hadronic
cross-section into a hard process (calculable?) and the
parton distributions (not calculable?)
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Kinematics of the Bjorken limit

n Bjorken limit : Q2, ν → +∞ , x = constant

n Go to a frame where the photon momentum is :

qµ =
1

m
N

(ν, 0, 0,
√
ν2 +m2

N
Q2)

n Therefore :

q+ ≡ q0 + q3√
2

∼ ν

m
N

→ +∞

q− ≡ q0 − q3√
2

∼ m
N
x→ constant

n Since q · y = q+y− + q−y+ − ~q⊥ · ~y⊥, the integration over yµ

is dominated by :

y− ∼ m
N

ν
→ 0 , y+ ∼ (m

N
x)−1

n Hence : y2 ≤ 2y+y− ∼ 1/Q2 → 0
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Kinematics of the Bjorken limit

n Wµν can be rewritten in terms of the commutator
[J†

µ(y), Jν(0)]. Thus, y2 ≥ 0 (causality). Therefore, the
Bjorken limit is dominated by :

0 ≤ y2
.

1

Q2
→ 0

i.e. by points very close to (and above) the light-cone

z

t

y2 = 1/Q2

n Note : in this limit, the components of yµ are not small...
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Time ordered correlator of currents

n Consider a time-ordered product of currents :

4πTµν ≡ i

∫
d4yeiq·y

〈〈
N(P )

∣∣T (J†
µ(y)Jν(0))

∣∣N(P )
〉〉

spin

n At fixed Q2, the functions T1,2(ν, Q
2) are analytic in ν with

cuts on the real axis starting at ±Q2/2

n Like Wµν , Tµν has a tensor decomposition, with structure
functions T1 and T2 :

Tµν = −T1

(
gµν − qµqν

q2

)
+

T2

P · q

(
Pµ − qµ

P · q
q2

) (
Pν − qν

P · q
q2

)

n Fr is related to the discontinuity of Tr across the cut
(Wµν = 2 Im Tµν)
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Operator Product Expansion

n Consider the correlator
〈
A(0)B(x)φ(x1) · · ·φ(xn)

〉

where A and B are two local operators, possibly composite
n When |x| → 0, this function is usually singular because

products of operators at the same point are ill-defined
n These singularities do not depend on the nature and

localization of the extra fields φ(xi)

n One can obtain them from an expansion of the form

A(0)B(x) =
|x|→0

∑

i

Ci(x) Oi(0)

u the Oi(0) are local operators with the quantum numbers of AB
u the Ci(x) are numbers that contain the singular behavior

n When |x| → 0, Ci(x) behaves as

Ci(x) ∼
|x|→0

|x|d(Oi)−d(A)−d(B) (up to logs)

B only the operators with a low mass dimension matter
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Operator Product Expansion of T(JJ)

n The local operators that may appear in the OPE of
T (J†

µ(y)Jν(0)) can be classified according to the
representation of the Lorentz group to which they belong. Let
us denote them Oµ1···µs

s,i where s is the “spin” of the operator, and
the index i labels the various operators having the same tensor
structure. The OPE of T1 and T2 has the form :

∑

s,i

Cs,i
µ1···µs

(y) Oµ1···µs

s,i (0)

n The Wilson coefficients of these operators must have the
following structure :

Cs,i
µ1···µs

(y) ≡ yµ1
· · · yµs Cs,i(y

2)

n The expectation values in the nucleon state are of the form :
〈〈
N(P )

∣∣Oµ1···µs

s,i (0)
∣∣N(P )

〉〉

spin
= [Pµ1 · · ·Pµs +trace terms]

〈
Os,i

〉
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Power counting and ‘twist’

n Let ds,i be the mass dimension of the operator Oµ1···µs

s,i

n Then, the dimension of Cs,i(y
2) is 6 + s − ds,i

B this function scales as (y2)(ds,i−s−6)/2 (up to logs)

n In a standard OPE, where yµ → 0, the factor yµ1
· · · yµn

would bring an extra |y|s to this scaling behavior, making the
coefficient of Oµ1···µs

s,i scale as |y|ds,i−6, and high-dimension
operators would be suppressed

n But in the Bjorken limit, the components of yµ do not go to
zero, and therefore the factor yµ1

· · · yµn
should not be

counted. In this case, it is the difference ds,i − s (called the
“twist”) that controls the scaling behavior of the coefficient

n The leading behavior of T (J†
µ(y)Jν(0)) is controlled by the

operators having the smallest twist. There is an infinity of
them, because the dimension ds,i can be compensated by a
higher spin
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Operator Product Expansion of T(JJ)
n Going back to the OPE of the structure functions T1 and T2,

we can write generically :

∑

s,i

〈
Os,i

〉 ∫
d4y eiq·y Cs,i(y

2) (P · y)s

∑

s

x−s
∑

i

〈
Os,i

〉
(−i)s Q2s C̃

(s)
s,i (Q2)

︸ ︷︷ ︸

Ds,i(Q
2)

n Note: from their definitions, T1 and T2 differ by a power of P .
Having the same dimension, they differ in fact by a factor x :

T1(x,Q
2) =

∑

s

x−s
∑

i

〈
Os,i

〉
D1;s,i(Q

2)

T2(x,Q
2) =

∑

s

x1−s
∑

i

〈
Os,i

〉
D2;s,i(Q

2)

u Since all the powers of x and Q2 have been counted explicitly,
D1;s,i and D2;s,i can only differ by constant factors and logs
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Operator Product Expansion of T(JJ)
n Going back to the OPE of the structure functions T1 and T2,

we can write generically :

∑

s,i

〈
Os,i

〉 (
−iPµ

∂

∂qµ

)s

C̃s,i(−qµqµ)

∑

s

x−s
∑

i

〈
Os,i

〉
(−i)s Q2s C̃

(s)
s,i (Q2)

︸ ︷︷ ︸

Ds,i(Q
2)

n Note: from their definitions, T1 and T2 differ by a power of P .
Having the same dimension, they differ in fact by a factor x :

T1(x,Q
2) =

∑

s

x−s
∑

i

〈
Os,i

〉
D1;s,i(Q

2)

T2(x,Q
2) =

∑

s

x1−s
∑

i

〈
Os,i

〉
D2;s,i(Q

2)

u Since all the powers of x and Q2 have been counted explicitly,
D1;s,i and D2;s,i can only differ by constant factors and logs
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(−2iP · q)s C̃
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n Going back to the OPE of the structure functions T1 and T2,

we can write generically :
∑

s

x−s
∑

i

〈
Os,i

〉
(−i)s Q2s C̃

(s)
s,i (Q2)

︸ ︷︷ ︸

Ds,i(Q
2)

n Note: from their definitions, T1 and T2 differ by a power of P .
Having the same dimension, they differ in fact by a factor x :

T1(x,Q
2) =

∑

s

x−s
∑

i

〈
Os,i

〉
D1;s,i(Q

2)

T2(x,Q
2) =

∑

s

x1−s
∑

i

〈
Os,i

〉
D2;s,i(Q

2)

u Since all the powers of x and Q2 have been counted explicitly,
D1;s,i and D2;s,i can only differ by constant factors and logs



Kinematics

Experimental facts

Naive parton model

OPE in a free field theory

l Kinematics of the BJ limit

l Time-ordered correlator

l Operator Product Expansion

l OPE of T(JJ)

l Moments of F1 and F2

l Bare Wilson coefficients

l Bare Wilson coefficients

l Conclusions

Scaling violations

Factorization

François Gelis – 2006 Lecture II/V – SPhT, Saclay, January 2006 - p. 26/57

Operator Product Expansion of T(JJ)

n The coefficient function Cs,i(y
2) behaves like yds,i−s−6

u Its Fourier transform C̃s,i(Q
2) scales as Q2+s−ds,i

u So does Dr;s,i(Q
2) ∝ Q2sC̃

(s)
s,i (Q2)

n Therefore, if the leading twist operators correspond to
ds,i − s = 2, we have Bjorken scaling automatically

n The coefficients Dr;s,i(Q
2) are calculable in perturbation

theory, and do not depend on the target
n The matrix elements

〈
Os,i

〉
are non perturbative, and

contain all the information about the target

n At this stage, the predictive power of this approach is limited
to scaling properties, because we do not know the target
dependent factors

〈
Os,i

〉

However, when we bring the renormalization group
machinery into the game, we will also predict deviations from
these scaling laws
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Moments of F1 and F2
n The OPE provides a Taylor expansion of T1,2 in powers of

x−1 (all the x dependence is in the factor x−s) :

Tr =
∑

s

tr(s,Q
2) xar−s =

∑

s

tr(s,Q
2)

(
2

Q2

)2

νs−ar

with a1 = 0, a2 = 1. From this, we get :

tr(s,Q
2) =

1

2πi

(
Q2

2

)s−ar ∫

C

dν

ν
νar−s Tr(ν,Q

2)

n Do the integration by wrapping the contour around the cuts, and use
the relation between Fr and the discontinuity of Tr accros the cut :

ν

C tr(s,Q
2) =

2

π

∫ 1

0

dx

x
xs−ar Fr(x,Q

2)

B the OPE gives the moments of the DIS structure functions
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Bare Wilson coefficients

n Now, let us assume that the underlying field theory of strong
interactions has spin 1/2 fermions (quarks) and vector
bosons (gluons). The operators with the lowest twist are
(dimension s + 2 and spin s, hence twist 2) :

Oµ1···µs

s,f ≡ ψfγ
{µ1∂µ2 · · · ∂µs}ψf

Oµ1···µs
s,g ≡ Fα

{µ1∂µ2 · · · ∂µs−1Fµs}α

where the brakets {· · · } denote a symmetrization of the indices
µ1 · · ·µs and a subtraction of the trace terms on those indices

n In order to compute the Wilson coefficients, one can exploit
the fact that they do not depend on the target:

consider an elementary target (single fermion or vector boson) for
which everything is calculable (including the

〈
Os,i

〉
, that are non

perturbative if the target is a nucleon)
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Bare Wilson coefficients

n Consider a quark state of a given flavor and given spin. At
lowest order, one has :

〈
f, σ

∣∣Oµ1···µs

s,f ′

∣∣f, σ
〉

= δff ′uσ(P )γ{µ1uσ(P )Pµ2 · · ·Pµs}

〈
f, σ

∣∣Oµ1···µs
s,g

∣∣f, σ
〉

= 0

n Averaging over the spin of the quark, and comparing with
Pµ1 · · ·Pµs

〈
Os,i

〉
, leads to :

〈
Os,f ′

〉
f

= δff ′ ,
〈
Os,g

〉
f

= 0

n On the other hand, one can calculate directly the expectation
value of the current-current correlator in this quark state.
This is simply done by taking the parton model results for
F1,2 and using dispersion relations to get T1,2:

t1(s,Q
2) =

1

π
e2f , t2(s,Q

2) =
2

π
e2f
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Bare Wilson coefficients

n Therefore, the bare coefficient functions are :

D1;s,f (Q2) =
1

π
e2f , D2;s,f (Q2) =

2

π
e2f

n Repeating the same steps with a vector boson state gives :

D1;s,g(Q2) = D2;s,g(Q2) = 0

if the vector bosons are assumed to be electrically neutral

n Going back to a nucleon target, it is convenient to define
parton distribution functions as the fi(x) whose moments
are : ∫ 1

0

dx

x
xs fi(x) = 〈Os,i〉

so that :

F1(x) =
1

2

∑

f

e2fff (x) , F2(x) = x
∑

f

e2fff (x) = 2xF1(x)
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Learnings from free field theory

n Despite the fact that the result is embarrassingly similar to
what we obtained in a much simpler way in the naive parton
model, this exercise has taught us several things :

n Bjorken scaling can be derived from first principles in a field
theory of free fermions (somewhat disturbing given that
these fermions are constituents of a strongly bound state)

n We now have an operatorial definition of the distribution fi(x)
(not calculable perturbatively however)

n More importantly, the experimental observation of Bjorken
scaling is telling us that the field theory of strong interactions
must become a free theory in the limit Q2 → +∞
B asymptotic freedom

n As shown by Gross, Wilczek, Politzer in 1973, non-abelian
gauge theories with a reasonable number of fermionic fields
(like QCD with 6 flavors of quarks) have this property
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Operator rescaling

n In the previous discussion, we have implicitly assumed that
there is no scale dependence in the moments

〈
Os,i

〉
of the

distribution functions
n In fact, they depend on the renormalization scale µ2, so that

the distribution functions are scale dependent as well
n Of course, the structure functions F1 and F2, being

observable quantities, cannot depend on the renormalization
scale µ2. This means that there should also be a µ2

dependence in the coefficient functions, in order to
compensate the µ2 dependence from

〈
Os,i

〉

n The Wilson coefficients will be some trivial power of Q2

imposed by their dimension (that alone would imply Bjorken
scaling), times a function of the ratio Q2/µ2. This corrective
factor will violate Bjorken scaling
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Callan-Symanzik equation

n Consider the following correlators :

G
JJ

(x) ≡ 〈T (J(x)J(0))〉 , Gs,i(0) ≡ 〈Os,i(0)〉

G
JJ

(x) =
∑

s,i

Cs,i(x)Gs,i(0)

n The Callan-Symanzik equations for G
JJ

and Gs,i are :

[µ∂µ + β∂g + 2γ
J
]G

JJ
= 0

[(µ∂µ + β∂g) δij + γs,ij ]Gs,j = 0

where β is the beta function, γ
J

the anomalous dimension of the
current J (in fact γ

J
= 0 for conserved currents), and γs,ij the

matrix of anomalous dimensions for the Os,i (the operator mixing is
limited to operators with the same Lorentz structure)

n By combining the previous equations, one gets :

[(µ∂µ + β∂g) δij − γs;ji]Cs,j = 0
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Solution of the CS equation
n The dimensionless coefficients Dr;s,i(Q, µ, g) are in fact

functions Dr;s,i(Q/µ, g). Under rescalings of Q, they obey :
[(
−Q∂

Q
+ β(g)∂g

)
δij − γs,ji(g)

]
Dr;s,j(Q/µ, g) = 0

n In order to solve this equation, let us first introduce the
running coupling g(Q, g) such that :

ln(Q/Q0) =

∫ g(Q,g)

g

dg′

β(g′)

(this is equivalent to Q∂
Q
g(Q, g) = β(g(Q, g)) and g(Q0, g) = g)

n Any function F (g(Q, g)) obeys
[
−Q∂

Q
+ β(g)∂g

]
F = 0

n We also have

[
−Q∂

Q
+ β(g)∂g

]
e
−

∫ Q
Q0

dM
M

γ(g(M,g))
=

[
e
−

∫ Q
Q0

dM
M

γ(g(M,g))

]
γ(g)
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Solution of the CS equation

n Therefore, the Wilson coefficients at scale Q can be
expressed in terms of the Wilson coefficients at scale Q0 by :

Dr;s,i(Q/µ, g) = Dr;s,j(Q0/µ, g(Q, g))

[
e
−

∫ Q
Q0

dM
M

γs(g(M,g))

]

ji

n If the underlying theory is asymptotically free, like QCD, then
at large Q the coupling is small and we can approximate :

γs,ij(g) = g2Aij(s) , g2(Q, g) =
8π2

β0 ln(Q/Λ
QCD

)

where the Aij(s) are given by a 1-loop perturbative calculation

n Finally, the solution can be rewritten as :

Dr;s,i(Q/µ, g) = Dr;s,j(Q0/µ, g(Q, g))




(
ln(Q/Λ

QCD
)

ln(Q0/ΛQCD
)

)− 8π2

β0
A(s)




ji



Kinematics

Experimental facts

Naive parton model

OPE in a free field theory

Scaling violations

l Operator rescaling

l Callan-Symanzik equation

l Solution of the CS equation

l Scaling violations

l Probabilistic interpretation

l Anomalous dimensions

l Valence sum rules

l Momentum sum rule

l Practical strategy

l HERA results for F2

Factorization

François Gelis – 2006 Lecture II/V – SPhT, Saclay, January 2006 - p. 36/57

Scaling violations in F1 and F2

n The moments of the structure function F1 at scale Q2 read :

∫ 1

0

dx

x
xs F1(x,Q

2) =
∑

i,f

e2f
2




(
ln(Q/Λ

QCD
)

ln(Q0/ΛQCD
)

)− 8π2

β0
A(s)




fi

〈Os,i〉
Q0

n F1 takes the parton model form F1(x, Q2) = 1
2

∑
f e2

f ff ,
provided we define quark distributions from their moments:

∫ 1

0

dx

x
xs ff (x,Q2) ≡

∑

i




(
ln(Q/Λ

QCD
)

ln(Q0/ΛQCD
)

)− 8π2

β0
A(s)




fi

〈Os,i〉
Q0

u The quark distribution is now Q2 dependent
u It depends on the expectation value of operators involving gluons

n Scaling violations at LO preserve the Callan-Gross relation
at large Q :

F2(x,Q
2) = 2xF1(x,Q

2)
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Probabilistic interpretation
n In order to make the interpretation of the Q dependence

more transparent, let us introduce as well a gluon
distribution, even though it is not probed directly in DIS :

∫ 1

0

dx

x
xs fg(x,Q2) ≡

∑

i




(
ln(Q/Λ

QCD
)

ln(Q0/ΛQCD
)

)− 8π2

β0
A(s)




gi

〈Os,i〉
Q0

n The derivative of the moments of the parton distributions
with respect to ln(Q2) is :

Q2 ∂fi(s,Q
2)

∂Q2
= −g

2(Q, g)

2
Aji(s)fj(s,Q

2)

n In order to go further, we need the following result :

A(s)f(s) =

∫ 1

0

dx

x
xs

∫ 1

x

dy

y
A(x/y)f(y)
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Probabilistic interpretation
n Define the splitting functions Pij from their moments :

∫ 1

0

dx

x
xs Pij(x) ≡ −4π2Aij(s)

n Therefore, one has the following evolution equation for
fi(x, Q2) (DGLAP) :

Q2 ∂fi(x,Q
2)

∂Q2
=
g2(Q, g)

8π2

∫ 1

x

dy

y
Pji(x/y)fj(y,Q

2)

n Interpretation : the resolution of the γ∗ changes with Q

u Low Q: u Large Q:

u g2Pji(z) describes the splitting j → i, where the daughter parton
takes the fraction z of the momentum of the original parton
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Anomalous dimensions
n The anomalous dimension of an operator O is given by :

γO =
µ

ZO

∂ZO

∂µ
, where Orenormalized = ZO

−1Obare

n At 1-loop, the operator Oµ1···µs

s,f has the following corrections :

n Moreover, to ensure gauge invariance, the operator Oµ1···µs

s,f

should be defined as : Oµ1···µs

s,f ≡ ψfγ
{µ1Dµ2 · · ·Dµs}ψf

Therefore, one has also the following 1-loop diagrams :

n Finally, there are some diagrams mixing Os,f and Os,g
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Anomalous dimensions
n At 1-loop, the coefficients Aij(s) in the anomalous

dimensions are :

Agg(s)=
1

2π2

{
3

[
1

12
− 1

s(s−1)
− 1

(s+1)(s+2)
+

s∑

j=2

1

j

]
+
Nf

6

}

Afg(s) =
1

2π2

{
1

s+ 2
+

2

s(s+ 1)(s+ 2)

}

Agf (s) =
3

8π2

{
1

s+ 1
+

2

s(s− 1)

}

Aff ′(s) =
3

8π2

{
1 − 2

s(s+ 1)
+ 4

s∑

j=2

1

j

}
δff ′

n All the non-singlet linear combinations:
∑

f
afOs,f with∑

f af = 0 are eigenvectors of the matrix of anomalous
dimensions, with an eigenvalue Aff (s)

These linear combinations do not mix with the remaining two
operators,

∑
f
Os,f and Os,g, through renormalization
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Valence sum rules (s=1)
n In the case of s = 1, the anomalous dimension of the

non-singlet quark operators is

Aff (s = 1) = 0

n Going back to the evolution equation for the moments of
quark distributions, this means that we have :

∂

∂Q2





∫ 1

0

dx
∑

f

afff (x,Q2)



 = 0

for any linear combination such that
∑

f af = 0

n For instance, for a nucleon, this implies that the number of u
quarks minus the number of d quarks is independent of Q2

n Interpretation : the production of extra quarks by g → qq̄
produces quarks of all flavors in equal numbers
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Momentum sum rule (s=2)
n In the singlet sector, the matrix of anomalous dimensions for

s = 2 reads :

Asinglet(s = 2) =
1

3π2




Nf

4

2Nf

3

1
2

4
3




n This matrix has a vanishing determinant, which means that a
linear combination of the flavor singlet operators is not
renormalized : 8Oµν

2,g − 3
∑

f Oµν
2,f

n This leads also to a sum rule :

∂

∂Q2





∫ 1

0

dx x


3

∑

f

ff (x,Q2) − 8fg(x,Q2)






 = 0

n Interpretation : the total longitudinal momentum of the target
is conserved, and the momentum that goes into the newly
produced gluons must be taken from the quarks
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Practical strategy

n Due to the non-perturbative nature of the parton distributions
at a given fixed scale Q, it does not make sense to try to
predict the value of Fr at a given Q out of nothing

n Instead,
u fit the parton distributions from the measurement of Fr at a

moderately low scale Q0

u using DGLAP, evolve them to a higher scale Q
u predict the values of the structure functions Fr at the scale Q
u compare with DIS measurements

n This approach can be systematically improved by going to
higher order, both for the hard subprocess, and for the
splitting functions and beta function

n Current state of the art :
u NLO program fully implemented
u NNLO splitting functions and beta function are known
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HERA results for F2

n HERA results and NLO DGLAP fit :
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Factorization in DIS

n The DIS structure functions can be written as :

Fr(x,Q
2) =

∑

i

∫ 1

x

dzfi(z,Q
2)Fr,i(x/z,Q

2) + O
(
m2

N

Q2

)

u Fr,i is the structure function for a target parton i
(at leading order, it is non-zero only for quarks)

u x/z is the Bjorken-x variable for the system γ∗i

n Schematically, one can represent this factorization as :

Fr,i

fi

P

zP
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Factorization in DIS

n In perturbation theory, the terms included by the RG
evolution correspond to factors of g2 enhanced by large
logarithms :

g2 ln
(
Q2/µ2) where µ2 is some soft cutoff

n The logs are due to collinear divergences in loop corrections
to Fr,i. The first power of g2 ln(Q2/µ2) comes from :

fq fq fq fq

fg fg
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Factorization in DIS - Beyond LO

n For DIS, the procedure for going to NLO is straightforward
and dictated by the OPE approach. One needs the following
quantities at NLO :
u coefficient functions
u beta function
u anomalous dimensions (or splitting functions)

n Changes compared to LO :
u The Callan-Gross relation does not hold anymore
u There are various ways to define parton distributions: they are

not directly measurable, and one should regard them as an
intermediate device to relate various measurable cross-sections.
The hard scattering part of the factorization formula must be
changed accordingly

u Some parton sum rules may get modified at NLO
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Factorization in Drell-Yan
n The Drell-Yan process is a reaction between two hadrons in

which a virtual photon is produced, that later decays into a
lepton-antilepton pair

n At the parton level, the simplest process responsible for this
reaction is a qq̄ → γ∗ annihilation :

n The cross-section in the naive parton model reads :

dσ

dQ2
=

4πα2

9Q4

∑

f

e2f

∫ 1

0

dx1 dx2 x1x2 δ(x1x2 −Q2/s)

×
[
f1f (x1)f2f̄ (x2) + f1f̄ (x1)f2f (x2)

]

f1f
-

f2f
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Factorization in Drell-Yan

n Sample of loop diagrams with leading-log contributions :

f1f
-

f2f

f1f
-

f2f

f1f
-

f2g

n At LO, the naive parton model Drell-Yan formula remains
true after resummation of all the leading log corrections,
modulo the replacement fif (xi) → fif (xi, Q

2), with the same
distribution functions as in DIS :

dσ

dQ2
=

4πα2

9Q4

∑

f

e2f

∫ 1

0

dx1 dx2 x1x2 δ(x1x2 −Q2/s)

×
[
f1f (x1, Q

2)f2f̄ (x2, Q
2) + f1f̄ (x1, Q

2)f2f (x2, Q
2)

]
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Collinear factorization

n Factorization is the possibility to resum all the powers
[g2 ln(Q2/µ2)]n into universal parton distributions
u The neglected contributions are suppressed by powers of 1/Q

u The hard subprocess is infrared safe

n The “bare” parton distributions are turned into Q-dependent
distributions, that obey the DGLAP equation

n The universality of the parton distributions confers to QCD a
much stronger predictive power, since the distributions
measured in DIS can be used to predict other processes

n Interactions due to soft gluons in the final state cancel when
one sums over degenerate final states (KLN)

n Crucial for factorization is the large difference between the
short and long timescales : at high energy, internal hadronic
timescales get dilated while the duration of the interaction
goes to zero because of Lorentz contraction
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Separation of timescales
n Consider a massless parton of longitudinal momentum p splitting

into two partons of longitudinal momenta zp and (1 − z)p and
transverse momenta +~k⊥ and −~k⊥. Their energies are :

E0 = p , E1 ≈ |z|p+
~k

2

⊥

2|z|p , E2 ≈ |1 − z|p+
~k

2

⊥

2|1 − z|p

n The lifetime of this fluctuation is given by :

τ−1
fluct ∼ E1 +E2 − E0 = (|z| + |1 − z| − 1)p+

~k
2

⊥

2p

(
1

|z| +
1

|1 − z|

)

n If z < 0 or z > 1, this fluctuation is very short-lived

n If 0 < z < 1, |z| + |1 − z| = 1, and the lifetime becomes :

τfluct ∼ 2z(1 − z)p/~k
2

⊥

n This must be compared with the interaction time of the virtual
photon : τint ∼ p/Q2. For the collinear contributions: ~k

2

⊥ � Q2,
hence τint � τfluct
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Initial state interactions
n A major complication in processes with two incoming

hadrons, like Drell-Yan, is the possibility that the two hadrons
may be connected by soft gluons before the collision :

f1f
-

f2f

n This could have the disastrous effect of making the parton
distributions of a hadron non-universal

n Such interactions can be seen as the interactions of one
projectile with the Coulomb field of the other projectile

n For very high energy projectiles, Lorentz contraction implies
that the field strength Fµν is localized on a sheet
perpendicular to the trajectory. Therefore, it cannot affect the
contents of the other hadron before the collision
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Infrared safe final states
n Infrared divergences cancel when one sums over all the

possible final states (Kinoshita-Lee-Nauenberg theorem)
n One can see such a cross-section as the sum of cuts

through a forward scattering amplitude. Each individual cut
is a divergent contribution, but the sum of all the cuts is finite

n Completely inclusive final states are not the only ones to be
infrared safe. Consider the following weighted cross-section :

σ
S
≡

∫
[dΦn]

dσ

dΦn

Sn(p1, · · · , pn)

u Such a final state is infrared safe if the function Sn gives the
same weight to configurations that differ by a soft gluon, or that
are identical up to the collinear splitting of a hard parton

u Indeed, all the cuts through a potentially dangerous loop
correction in the forward amplitude have the same weight, and
the KLN cancellation works in the same manner as in the
completely inclusive case
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Specific hadrons in the final state

n When considering a specific hadron in the final state, one
needs a fragmentation function DH/i(z, µ2), which represent
the probability to obtain the hadron H from the parton i with
a momentum fraction z

n Again, such a probabilistic description is possible thanks to
the incoherence of the hadronization process with respect to
the hard scattering :
u The process of hadronization occurs over timescales which are

large compared to that of hard processes
u Moreover, the hadronization of a particular parton does not

depend on the other hard partons produced in the event
n The resummation of leading logarithms leads to a scale

dependence of the fragmentation functions, which obey a
DGLAP equation



Kinematics

Experimental facts

Naive parton model

OPE in a free field theory

Scaling violations

Factorization

Outline of lecture III

François Gelis – 2006 Lecture II/V – SPhT, Saclay, January 2006 - p. 55/57

Lecture III : QCD on the light-cone

n Light-cone coordinates - Infinite Momentum Frame

n Poincaré algebra on the light-cone - Galilean sub-algebra

n Canonical quantization on the light-cone

n Scattering by an external potential

n Light-cone QCD
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Lecture IV : Saturation and CGC

n BFKL equation

n Saturation of parton distributions

n Balitsky-Kovchegov equation

n Color Glass Condensate - JIMWLK

n Analogies with reaction-diffusion processes

n Pomeron loops
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Lecture V : Calculating observables

n Field theory coupled to time-dependent sources

n Generating function for the probabilities

n Average particle multiplicity

n Numerical methods for nucleus-nucleus collisions

u Gluon production

u Quark production
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