IV. The Colour Glass Condensate

- A. Effective theory for the small-x gluons
- The small-x gluons \approx Classical color fields radiated by the fast partons with x' > x

$$\left(D_{\nu}F^{\nu\mu}\right)_{a}(x) = J^{\mu}_{a}(x)$$

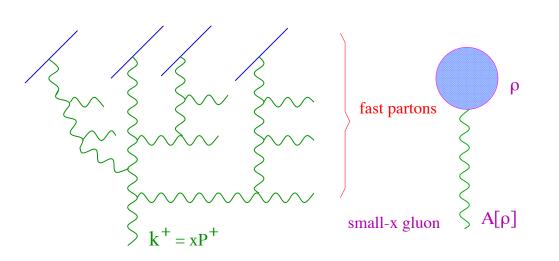
 $J_a^{\mu}(x) =$ the color current due to the fast partons. $D_{\nu} = \partial_{\nu} - igA_{\nu}^a T^a, \qquad D_{\nu}^{ab} = \partial_{\nu}\delta^{ab} - gf^{abc}A_{\nu}^c$

The structure of the color current
The fast partons move nearly at the speed of light in
the positive z (or x⁺) direction.
⇒ J^μ_a has only a 'plus' component: J^μ_a = δ^{μ+}ρ_a
⇒ ρ_a is localized near the light-cone: ρ_a ∝ δ(x⁻)
⇒ ρ_a is independent of LC time x⁺

$$J^{\mu}_{a}(x) \approx \delta^{\mu+}\delta(x^{-})\rho_{a}(x)$$

- The color charge density $\rho_a(\boldsymbol{x})$: a random variable with correlations $\langle \rho \cdots \rho \rangle_x$ determined by the dynamics at the larger scales x' > x
 - \implies Weight function(al) $W_x[\rho]$ (gauge-invariant)

 $\left\langle F_a^{+i}(x^+, \vec{x}) F_a^{+i}(x^+, \vec{y}) \right\rangle_x = \int D[\rho] \ W_x[\rho] \ \mathcal{F}_a^{+i}(\vec{x}) \ \mathcal{F}_a^{+i}(\vec{y})$ $\mathcal{F}_a^{+i} = \partial^+ \mathcal{A}_a^i[\rho] : \text{ the classical solution in LC gauge.}$



- With decreasing x, new modes become relatively fast, and must be included in the classical source ρ \implies Evolution of the weight function $W_x[\rho]$ with x
- Quantum evolution is computed in perturb. theory, by integrating out the fast gluons in layers of x :

 leading-log 1/x for the newly radiated gluons
 to all orders in the classical field A[ρ] generated by the color source constructed in previous steps
 ⇒ Functional evolution equation for W_x[ρ] :

$$\frac{\partial W_Y[\rho]}{\partial Y} = -\alpha_s H\left[\rho, \frac{\partial}{\partial \rho}\right] W_Y[\rho]$$

- Classical theory (a stochastic Yang–Mills theory)
 + Quantum evolution ⇒ An effective theory
- Main difference w.r.t. BFKL: non–linear effects $\mathcal{A} \sim 1/g$: non–linear effects must be treated exactly !
 - \longrightarrow exact solution $\mathcal{A}[\rho]$ to the classical EOM;
 - \longrightarrow exact background field quantum calculation.

Why "C G C"

- "Color" : Obvious !
- "Glass": Separation in time scales between the small-x gluons and their fast sources
 Fast partons (x' ≫ x) are frozen over the natural time scale for dynamics at x, namely:

$$\tau(x) \sim \frac{2k^+}{k^2} \sim \frac{2P^+}{k^2} x$$

One can therefore solve the dynamics of the small-x gluons at fixed distribution of the fast partons, and only then average over the latter.

A similar situation: "spin glass"

Collection of magnetic impurities ("spins") randomly distributed on a non-magnetic lattice.

spins \longleftrightarrow small-x gluons

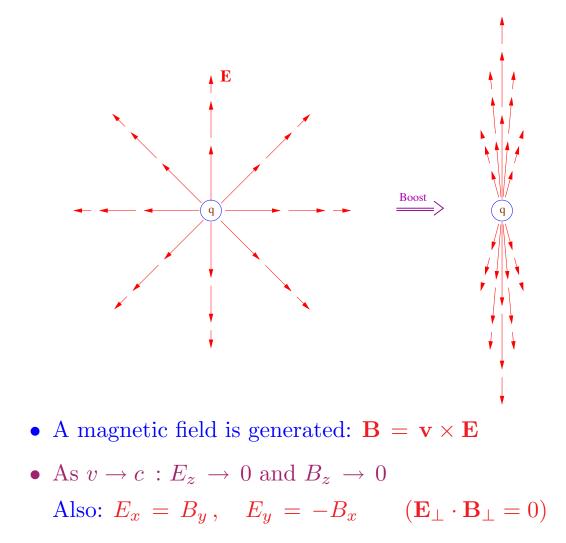
spin positions \longleftrightarrow color charge ρ

• "Condensate" : Coherent state with high quantum occupancy ($\sim 1/\alpha_s$ at saturation)

$$rac{\mathrm{d}N}{\mathrm{d}Y\mathrm{d}^2oldsymbol{k}\,\mathrm{d}^2oldsymbol{b}} \sim rac{1}{lpha_s} \quad ext{for} \quad oldsymbol{k}^2 \lesssim Q_s^2(Y)$$

B. The classical solution $\mathcal{A}[\rho]$

- What is the color field of a fast moving gluon ?
- Recall the corresponding problem in QED: The Weiszäcker–Williams field of a fast $(v \simeq c)$ charged particle.
- Start in the particle rest frame: a <u>static</u> electric field, radially oriented (spherical symmetry).
- Make a boost with velocity v along z:



- Fields localized at z = t, or $x^- \equiv (t z)/\sqrt{2} = 0$, and independent of $x^+ \equiv (t + z)/\sqrt{2}$ (plane wave)
- LC variables: the only non-zero field strength is $F^{+i} = \sqrt{2} E^i = \sqrt{2} \epsilon^{ij} B^j$
- Maxwell eqs: $\partial_{\nu}F^{\mu\nu} = \delta^{\mu+}\rho$ with $\rho = \delta(x^{-})\rho(x)$

$$F^{+i} = \partial^i \frac{1}{\nabla_{\perp}^2} \rho \equiv -\partial^i \alpha, \quad \text{with } -\nabla_{\perp}^2 \alpha = \rho$$

 $\alpha \equiv A^+$ in the COV–gauge $\partial^{\mu}A_{\mu} = 0$

• The non-Abelian problem: $D_{\nu}F^{\nu\mu} = \delta^{\mu+}\rho(\vec{x})$ The COV-gauge solution is simple again !

$$\mathcal{A}^{\mu}_{a}(\vec{x}) = \delta^{\mu +} \alpha_{a}(\vec{x}) \text{ with } -\nabla^{2}_{\perp} \alpha_{a} = \rho_{a}$$

• Explicitly

$$\alpha_a(x^-, \boldsymbol{x}) = \int \frac{\mathrm{d}^2 \boldsymbol{y}}{4\pi} \ln \frac{1}{(\boldsymbol{x} - \boldsymbol{y})^2 \Lambda^2} \rho_a(x^-, \boldsymbol{y})$$

 $\implies \text{IR cutoff } \Lambda^2 \text{ for the transverse dynamics} \\ \implies \text{locality in } x^-$

- But gauge-invariant observables remain non-linear, as they involve Wilson lines built with $A^+ = \alpha$!
- Obvious for dipole scattering :

$$S \implies V^{\dagger}(\boldsymbol{x}) \equiv \mathbf{P} \exp\left\{ig \int \mathrm{d}x^{-} \alpha_{a}(x^{-}, \boldsymbol{x})t^{a}\right\}$$

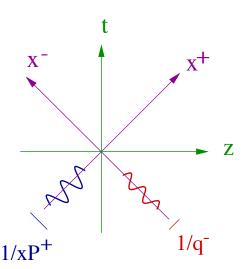
Exercice The gluon distribution involve the gauge-invariant operator \mathcal{O}_{γ} . Show that, when evaluated in the COV–gauge, this operator reads:

$$\mathcal{O}_{\gamma}(\vec{x}, \vec{y})\Big|_{\text{COV}} = \text{Tr}\left\{\underbrace{V(\vec{x})\mathcal{F}^{i+}(\vec{x})V^{\dagger}(\vec{x})}_{\mathcal{F}^{i+}(\vec{x})|_{\text{LC}}}V(\vec{y})\mathcal{F}^{i+}(\vec{y})V^{\dagger}(\vec{y})\right\}$$

$$\mathcal{F}^{i+} = \partial^i \alpha, \quad V^{\dagger}(x^-, \boldsymbol{x}) \equiv \mathbf{P} \exp\left\{ig \int_{-\infty}^{x} \mathrm{d}z^- \alpha_a(z^-, \boldsymbol{x})T^a\right\}$$

NB: The longitudinal (x⁻) structure of ρ (or α) <u>does</u> matter : P e^{ig ∫ dx⁻α_a(x⁻)T^a} ≠ e^{ig α_aT^a} ⇒ one cannot simply use α(x⁻, x) = δ(x⁻)α(x) Rather: ρ (and α) is <u>quasi-localized</u> near x⁻ = 0 within a distance Δx⁻ ~ 1/k⁺ = 1/xP⁺

Smaller is x, more is the hadron (CGC) extended in x^{-}



External probe: localized in x^+ ($\Delta x^+ \sim 1/q^-$) but extended in x^- : { $A^+(x^+ \simeq 0, x^-), -\infty < x^- < \infty$ }

C. The gluon distribution of the valence quarks (McLerran–Venugopalan model, 94)

• The valence quarks: the only fast partons

- x not too small (say x > 0.01), so one can neglect quantum evolution;

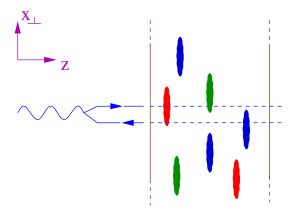
— a model for the initial condition for the evolution towards smaller values of x.

• Large nucleus $(A \gg 1)$ [like at RHIC] :

 \implies Many color sources $(N_c \times A)$!

 \implies A strong field even without quantum evolution !

- How to formulate this as a Color Glass ?
- A small $(1/Q \ll R_p =)$ dipole "sees" valence quarks from <u>different</u> nucleons \implies uncorrelated



 $\langle \rho_a(\boldsymbol{x}) \rho_b(\boldsymbol{y}) \rangle_A = \delta_{ab} \delta(\boldsymbol{x} - \boldsymbol{y}) \, \mu_A(\boldsymbol{x})$

 $\mu_A(\boldsymbol{x}) = \text{color charge squared per unit transverse area.}$

• Large nucleus \approx homogeneous \implies no x dependence

$$\langle Q^2 \rangle_A = (gt^a)(gt^a)N_cA = g^2 C_F N_c A$$

$$\langle Q^2 \rangle_A = \int d^2 \boldsymbol{x} \int d^2 \boldsymbol{y} \, \langle \rho_a(\boldsymbol{x})\rho_a(\boldsymbol{y}) \rangle_A = (N_c^2 - 1)\pi R_A^2 \mu_A$$

$$\Longrightarrow \mu_A = \frac{g^2 A}{2\pi R_A^2} = \frac{2\alpha_s A}{R_A^2} \sim \alpha_s A^{1/3}$$

- Weight function $W_A[\rho]$: a Gaussian with width μ_A
- Gluon distribution in the weak field limit

$$f_A(\boldsymbol{k}^2) = \pi \boldsymbol{k}^2 \frac{\mathrm{d}N}{\mathrm{d}Y \mathrm{d}^2 \boldsymbol{k}} = \frac{\boldsymbol{k}^2}{(2\pi)^2} \left\langle \left| \mathcal{F}_a^{+i}(\boldsymbol{k}) \right|^2 \right\rangle_A$$

Weak fields \implies Linearized EOM $\implies \mathcal{F}^{+i} \approx i(k^i/k^2)\rho$

$$f_A(\boldsymbol{k}^2) \approx \frac{1}{(2\pi)^2} \langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_A$$
$$f_A(\boldsymbol{k}^2) \approx A N_c \left(\alpha_s C_F / \pi \right) \equiv A N_c f_q(\boldsymbol{k}^2)$$

• The integrated gluon distribution (weak field)

$$xG_A(x,Q^2) \approx (N_c^2 - 1)\pi R_A^2 \int^{Q^2} \frac{\mathrm{d}\boldsymbol{k}^2}{(2\pi)^2} \frac{\mu_A}{\boldsymbol{k}^2}$$
$$\approx AN_c \frac{\alpha_s C_F}{\pi} \ln \frac{Q^2}{\Lambda^2}$$

 \implies Infrared divergence !

Why ? No x_{\perp} -correlations among the color sources !

• One expects quantum evolution towards small x to introduce correlations and energy dependence :

$$\mu_A \longrightarrow \mu_A(Y, \boldsymbol{k})$$

D. The Renormalization Group at Small-x

- ρ and its correlators change with decreasing x.
- Because of non-linear effects, the evolution couples *n*-point functions $\langle \rho(1)\rho(2)\cdots\rho(n)\rangle_x$ with different *n*.
- It is most conveniently formulated as a functional evolution equation for the weight function $W_x[\rho]$
- Strategy: Integrate out quantum fluctuations in layers of k⁺ (or of x, or of rapidity Y = ln(1/x)).
 i) Start with the effective theory at scale Λ⁺ = xP⁺. The fast partons with k⁺ > Λ⁺ have been already integrated out.

ii) Compute correlation functions at a new scale $b\Lambda^+$ with $b \ll 1$ but such that $\alpha_s \ln(1/b) < 1$.

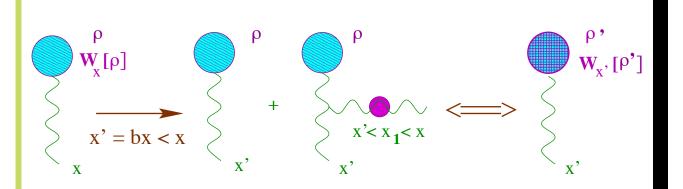
These include:

— classical correlations associated with ρ and described by $W_x[\rho]$

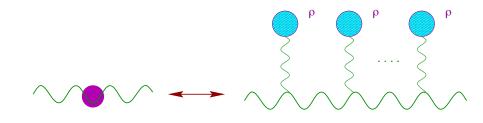
— quantum correlations associated with the 'semi-fast' partons with $b\Lambda^+ < k^+ < \Lambda^+$.

Quantum corrections are computed to $O(\alpha_s \ln(1/b))$ but to all orders in the classical field $\mathcal{A}[\rho]$

iii) Reinterpret the quantum corrections as classical correlations associated with a (functional) change in the weight function: $W_x[\rho] \to W_{x'}[\rho] = W_x + dW_x$ (with $x' = bx \ll x$). This fixes $dW_x[\rho]$.



• One-loop calculation with the Background–Field Propagator:



• Since $dW_x \propto \alpha_s \ln(x/x') \equiv \alpha_s dY$, this evolution is rewritten as a differential equation in Y :

$$\frac{\partial W_Y[\rho]}{\partial Y} = \frac{1}{2} \int_{\boldsymbol{x},\boldsymbol{y}} \frac{\delta}{\delta \rho_Y^a(\boldsymbol{x})} \ \chi_{\boldsymbol{x}\boldsymbol{y}}^{ab}[\rho] \ \frac{\delta}{\delta \rho_Y^b(\boldsymbol{y})} \ W_Y[\rho]$$

Renormalization Group Equation at small–x. Also known as "JIMWLK equation" (cf. A. Mueller) Jalilian-Marian, Kovner, Leonidov, Weigert, 97; Weigert, 2000; Iancu, Leonidov, McLerran, 2000

• A <u>second-order</u> functional differential equation.

• At each step $Y \to Y + dY$ in the evolution, only the 1-point and 2-point correlations of ρ need be adjusted: $\chi^{ab}(\boldsymbol{x}, \boldsymbol{y})[\rho] = \langle \delta \rho_Y^a(\boldsymbol{x}) \delta \rho_Y^b(\boldsymbol{y}) \rangle_{\rho}, \quad \sigma^a(\boldsymbol{x})[\rho] = \langle \delta \rho_Y^a(\boldsymbol{x}) \rangle_{\rho}$ • χ, σ : generalizations of the real and virtual parts of the BFKL kernel including background field effects : $\chi = \begin{cases} \rho & & \\ & \rho & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ &$

Functional relation $\sigma \longleftrightarrow \chi$ ensures the cancellation of infrared divergences in gauge–invariant quantities.

• Change of variables : $\rho_a \longrightarrow \alpha_a$ with $-\nabla_{\perp}^2 \alpha_a = \rho_a$

$$\frac{\partial W_Y[\alpha]}{\partial Y} = \frac{1}{2} \int_{\boldsymbol{x},\boldsymbol{y}} \frac{\delta}{\delta \alpha_Y^a(\boldsymbol{x})} \chi_{\boldsymbol{x}\boldsymbol{y}}^{ab}[\alpha] \frac{\delta}{\delta \alpha_Y^b(\boldsymbol{y})} W_Y[\alpha]$$

• χ depends upon α via Wilson lines:

$$\chi_{\boldsymbol{x}\boldsymbol{y}}^{ab}[\alpha] \equiv \int \frac{\mathrm{d}^2 \boldsymbol{z}}{\pi} \mathcal{K}_{\boldsymbol{x}\boldsymbol{y}\boldsymbol{z}} \left[(1 - V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{z}})(1 - V_{\boldsymbol{z}}^{\dagger} V_{\boldsymbol{y}}) \right]^{ab}$$
$$\mathcal{K}_{\boldsymbol{x}\boldsymbol{y}\boldsymbol{z}} \equiv \frac{1}{(2\pi)^2} \frac{(\boldsymbol{x} - \boldsymbol{z}) \cdot (\boldsymbol{y} - \boldsymbol{z})}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{z} - \boldsymbol{y})^2}$$

• The coupling g enters only via the Wilson lines !

E. General consequences of the RGE

1. Longitudinal (x^{-}) structure of α (or ρ)

• RGE: non-local in x_{\perp} and in x^-

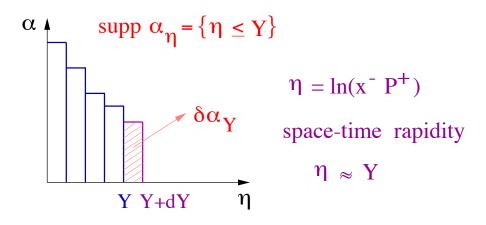
$$V^{\dagger}(\boldsymbol{x}) \equiv \mathbf{P} \exp\left\{ig\int \mathrm{d}x^{-}\alpha_{a}(x^{-},\boldsymbol{x})T^{a}\right\}$$

- With decreasing x, the classical field extends in x^- Lower $k^+ = xP^+ \iff$ Increase $\Delta x^- \sim 1/k^+$
- For the theory at scale Λ^+ , the support of the field is retricted to: $x^- < 1/\Lambda^+$

 $\Lambda^+ \to b \Lambda^+ \Longrightarrow \delta \alpha_{\Lambda}$ with support at $1/\Lambda^+ < x^- < 1/b \Lambda^+$

The new field $\delta \alpha_{\Lambda}$ has no overlap with the previous one.

• The CGC is built in layers of x^- .



• Wilson lines evolve by left (or right) multiplication:

$$V_{Y+dY}^{\dagger} = e^{ig \,\delta \alpha_Y^a T^a} V_Y^{\dagger}$$
$$\frac{\delta}{\delta \alpha_Y^a(\boldsymbol{x})} V_Y^{\dagger}(\boldsymbol{y}) = ig T^a V_Y^{\dagger}(\boldsymbol{x}) \delta(\boldsymbol{x} - \boldsymbol{y})$$

- 2. Quantum Evolution as a Random Walk
- Since $\delta \alpha_Y \equiv \alpha_Y dY$ is a random quantity, the evolution defines a random walk on SU(3) :

$$Y = n\epsilon, \qquad V_n^{\dagger}(\boldsymbol{x}) = e^{i\epsilon\alpha_n^a(\boldsymbol{x})T^a} V_{n-1}^{\dagger}(\boldsymbol{x})$$

$$\langle \alpha_n^a(\boldsymbol{x}) \rangle = \sigma_{n-1}^a(\boldsymbol{x}), \quad \langle \alpha_n^a(\boldsymbol{x}) \alpha_n^b(\boldsymbol{y}) \rangle = \frac{1}{\epsilon} \chi_{n-1}^{ab}(\boldsymbol{x}, \boldsymbol{y})$$

 σ_{n-1} and χ_{n-1} : functionals of V_{n-1}

- RGE: A functional Fokker–Planck equation with "time" Y and "diffusion coefficient" χ[ρ] ≥ 0. Blaizot, E.I., Weigert, 2002
- Recent numerical solution (lattice) Rummukainen, Weigert, sept. 2003
- Recall: <u>Brownian motion</u>

Small particle in a viscous liquid \implies Random velocity:

$$dx^{\alpha}/dt = v^{\alpha}(t), \qquad \langle v^{\alpha}(t)v^{\beta}(t')\rangle = \nu \,\delta^{\alpha\beta}\delta(t-t')$$

with $\alpha, \beta = \overline{1,3}$. With discretized time: $t = n\epsilon$

$$x_n^{\alpha} - x_{n-1}^{\alpha} = \epsilon v_n^{\alpha}, \qquad \langle v_n^{\alpha} v_r^{\beta} \rangle = (1/\epsilon) \nu \, \delta^{\alpha\beta} \, \delta_{nr}$$

• P(x, t): probability to find the particle at point x at time t. This obeys the diffusion (or FP) equation:

$$\frac{\partial P(\boldsymbol{x},t)}{\partial t} = D \frac{\partial^2 P(\boldsymbol{x},t)}{\partial x^{\alpha} \partial x^{\alpha}}, \qquad D \equiv \nu^2$$

• $\langle (\boldsymbol{x} - \boldsymbol{x}_0)^2 \rangle(t) = 6Dt$: "runaway solution"

3. Evolution equations for correlations

 A <u>functional</u>, non-linear, equation for W_Y[α]
 ⇔ An <u>infinite hierarchy</u> of ordinary equations for the n-point functions ⟨α(1)α(2)···α(n)⟩_Y

• $O[\alpha]$: any observable or correlation functions :

$$\langle O[\alpha] \rangle_Y = \int D[\alpha] O[\alpha] W_Y[\alpha]$$

Take a derivative w.r.t. Y and use the RGE:

$$\frac{\partial}{\partial Y} \langle O[\alpha] \rangle_{Y} = \int D[\alpha] O[\alpha] \frac{\partial W_{Y}[\alpha]}{\partial Y}$$
$$= \left\langle \frac{1}{2} \int_{\boldsymbol{x}\boldsymbol{y}} \frac{\delta}{\delta \alpha_{Y}^{a}(\boldsymbol{x})} \chi_{\boldsymbol{x}\boldsymbol{y}}^{ab} \frac{\delta}{\delta \alpha_{Y}^{b}(\boldsymbol{y})} O[\alpha] \right\rangle_{Y}$$

• Example:
$$O[\alpha] = \langle \alpha(\boldsymbol{x}) \alpha(\boldsymbol{y}) \rangle_Y$$

 $\frac{\partial}{\partial Y} \langle \alpha(\boldsymbol{x}) \alpha(\boldsymbol{y}) \rangle_Y = \langle \chi(\boldsymbol{x}, \boldsymbol{y}) \rangle_Y + \langle \sigma(\boldsymbol{x}) \alpha(\boldsymbol{y}) \rangle_Y + \langle \alpha(\boldsymbol{x}) \sigma(\boldsymbol{y}) \rangle_Y$

Via the Wilson lines within χ and σ , the r.h.s. involves all the *n*-point functions with $n \geq 2$!

• Weak field (low density) regime: $g\alpha \ll 1$ $V^{\dagger}(\boldsymbol{x}) \approx 1 + ig \int dx^{-} \alpha(x^{-}, \boldsymbol{x}) \equiv 1 + ig\alpha(\boldsymbol{x})$ $1 - V_{\boldsymbol{x}}^{\dagger}V_{\boldsymbol{z}} \approx -ig(\alpha(\boldsymbol{x}) - \alpha(\boldsymbol{z}))$ $\Longrightarrow \chi$ is quadratic in α , and σ is linear: $\chi \sim g^{2}\alpha^{2}, \quad \sigma \sim g^{2}\alpha$

 \implies Closed equation for the 2-point function: BFKL

 Strong field (high density) regime: gα ~ 1 This is relevant for correlations over large transverse separations, or soft momenta:

$$|\boldsymbol{x} - \boldsymbol{y}| \gtrsim 1/Q_s(Y)$$
 or $\boldsymbol{k}^2 \lesssim Q_s^2(Y)$

 $g\alpha(\boldsymbol{x}) \sim 1$ and strongly varying over a (relatively short) distance $\Delta x_{\perp} \sim 1/Q_s(Y)$

 \implies Wilson lines V, V^{\dagger} : complex exponentials which oscillate around zero over a distance $\sim 1/Q_s(Y)$

• When probed over distances large compared to $1/Q_s$, the Wilson lines average to zero: $V, V^{\dagger} \approx 0$

$$\langle V^{\dagger}(\boldsymbol{x})V(\boldsymbol{y})
angle_{Y} \ll 1 \text{ for } |\boldsymbol{x}-\boldsymbol{y}|\gg 1/Q_{s}(Y)$$

Exercice Show than, when
$$V, V^{\dagger} \approx 0$$
:

$$\chi^{ab}(\boldsymbol{x}, \boldsymbol{y}) \approx \delta^{ab} \frac{1}{\pi} \langle \boldsymbol{x} | \frac{1}{-\nabla_{\perp}^2} | \boldsymbol{y} \rangle, \quad \chi^{ab}(\boldsymbol{k}) \approx \delta^{ab} \frac{1}{\pi \boldsymbol{k}^2}$$

- The RGE reduces to free Brownian motion (no g !) \implies Duality at Saturation [E.I., McLerran 01]
- In particular, the evolution of the 2-point function reduces to :

$$rac{\partial}{\partial Y} \langle lpha(m{k}) lpha(-m{k})
angle_Y pprox rac{1}{\pi m{k}^2}$$

F. Non-Linear Gluon Evolution: Saturation & Geometric Scaling

- Focus on the charge-charge correlator (ρ(x)ρ(y))_Y:
 i) Interesting information about the spatial distribution of the color charges.
 - ii) Access to the gluon distribution:

$$f(Y, \boldsymbol{k}^2) \propto \langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_Y$$

• Initial condition: $x \simeq 10^{-1} \cdots 10^{-2} \Longrightarrow MV$ model

 $\langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_Y = \mu_0$ (no correlation)

• <u>Weak fields</u> $(\mathbf{k}^2 \gg Q_s^2(Y)) \Longrightarrow \text{BFKL}$

$$\langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_Y \approx \sqrt{\mu_0 \, \boldsymbol{k}^2} \, \mathrm{e}^{\omega \alpha_s Y}$$

• <u>Strong fields</u> $(\mathbf{k}^2 \ll Q_s^2(Y)) \Longrightarrow$ Free diffusion

$$\langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_Y \approx (\boldsymbol{k}^2/\pi) \left(Y - Y_s(\boldsymbol{k}) \right)$$

• $Y - Y_s(\mathbf{k})$ = rapidity excursion in the saturation regime for a given \mathbf{k} :

$$Q_s^2(Y) = \mathbf{k}^2$$
 for $Y = Y_s(\mathbf{k})$

 $Q_s^2(Y) = Q_0^2 e^{c\alpha_s Y} \implies Y - Y_s(\boldsymbol{k}) = \frac{1}{c\alpha_s} \ln \frac{Q_s^2(Y)}{\boldsymbol{k}^2}$

1. Color Neutrality at Saturation

$$\langle \rho(\boldsymbol{k}) \rho(-\boldsymbol{k}) \rangle_Y \propto \boldsymbol{k}^2 \quad \text{for} \quad \boldsymbol{k}^2 < Q_s^2(Y)$$

 \implies Improved infrared behaviour

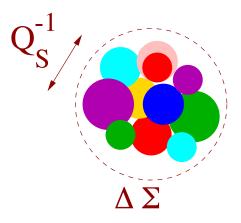
The behaviour expected from gauge symmetry !

<u>Recall</u>: In QED, the charge–charge correlator $\Pi_{00}(k) = \langle \rho \rho \rangle$ vanishes like k^2 as $k \to 0$.

• Physical interpretation:

Color neutrality over a typical size $1/Q_s(\tau)$

 $Q^a|_{\Delta\Sigma} \equiv \int_{\Delta\Sigma} \mathrm{d}^2 \boldsymbol{x} \ \rho_a(\boldsymbol{x}) \simeq 0 \quad \text{for} \quad \Delta\Sigma \gtrsim 1/Q_s^2$



• The densely packed gluons shield their color charges each other, to diminish their mutual repulsion, and thus allow for a maximal density state.

(E.I., McLerran 01; A. Mueller, 02)

• When "seen" over distance scales $\Delta x_{\perp} > 1/Q_s(Y)$, the gluons generate only dipolar color fields !

2. Gluon Saturation

• Gluon occupation number :

$$n_g \equiv \frac{(2\pi)^3}{2 \cdot (N_c^2 - 1)} \frac{\mathrm{d}N}{\mathrm{d}Y \mathrm{d}^2 \boldsymbol{k} \mathrm{d}^2 \boldsymbol{b}} \simeq \frac{\langle \rho_a(\boldsymbol{k}) \rho_a(-\boldsymbol{k}) \rangle_Y}{\boldsymbol{k}^2}$$

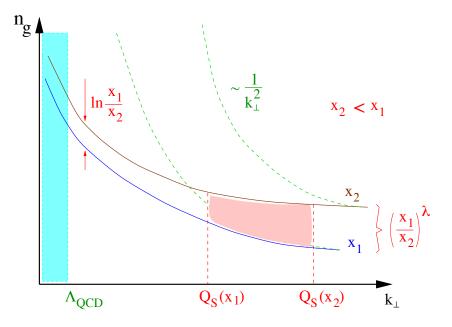
• <u>Very</u> large \boldsymbol{k} : $\ln \boldsymbol{k}^2 \gg \alpha_s Y$ (MV model, DGLAP) :

$$n_g(Y, \boldsymbol{k}) \approx rac{\mu_0}{\boldsymbol{k}^2}$$

• $\ln \mathbf{k}^2 \sim \alpha_s Y$ but $\mathbf{k}^2 \gg Q_s^2(Y)$ (BFKL) :

$$n_g(Y, \boldsymbol{k}) \approx \left(\frac{\mu_0}{\boldsymbol{k}^2}\right)^{1/2} e^{\omega \alpha_s Y} \propto \frac{1}{x^{\omega \alpha_s}}$$

• $\boldsymbol{k}^2 \ll Q_s^2(Y)$: $n_g(Y, \boldsymbol{k}) \approx \frac{1}{\alpha_s} \ln \frac{Q_s^2(Y)}{\boldsymbol{k}^2} \propto \ln \frac{1}{x}$

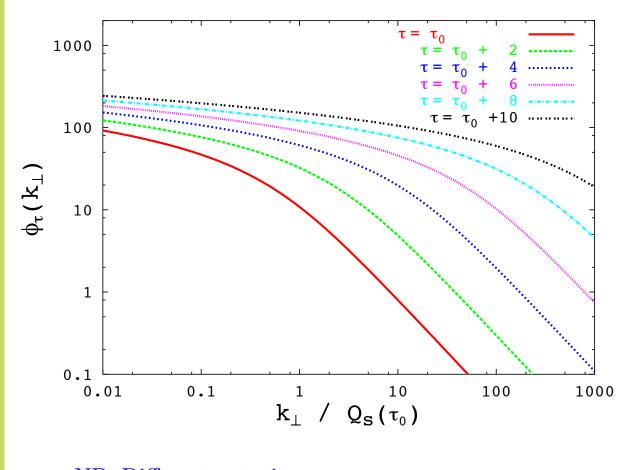


• <u>Power-law</u> increase with 1/k and 1/x is replaced by logarithmic behaviour \implies (marginal) saturation

• Condensate at Saturation:

$$n_g(k_\perp \lesssim Q_s(Y)) \sim 1/\alpha_s$$

• With increasing Y, new gluons are produced predominantly at high momenta $\gtrsim Q_s(Y)$.



NB: Different notations:

 $\tau \equiv Y$ and $\phi_{\tau}(k_{\perp}) \equiv n_g(Y, k_{\perp})$

• What is the saturation momentum ?

3. Saturation Momentum

- How to compute $Q_s(Y)$?
- Approach the saturation scale from the above $(k_{\perp} \gg Q_s(Y))$, where the linear BFKL eq. applies, and use the <u>saturation condition</u> at $k_{\perp} \simeq Q_s(Y)$.
- Saturation condition :

$$n_g(Y, \mathbf{k}) \sim \frac{1}{\alpha_s} \quad \text{for} \quad k \sim Q_s(Y)$$

• BFKL solution $(k_{\perp} \gg Q_s(Y))$:

$$n_g(Y, \boldsymbol{k}) \approx \left(\frac{Q_0^2}{\boldsymbol{k}^2}\right)^{1/2} e^{\omega \bar{\alpha}_s Y} \exp\left\{-\frac{\ln^2\left(\boldsymbol{k}^2/Q_0^2\right)}{2\beta \bar{\alpha}_s Y}\right\}$$

Exercice Show that the saturation condition together with the BFKL solution imply:

$$Q_s^2(Y) = Q_0^2 e^{c\bar{\alpha}_s Y}, \quad c \equiv \frac{-\beta + \sqrt{\beta(\beta + 8\omega)}}{2} = 4.84...$$

- Controlled up to terms $O(\ln Y)$ in the exponent.
- Replace $Q_0^2 \to Q_s^2(Y)$ as the reference scale :

$$\ln \frac{\boldsymbol{k}^2}{Q_0^2} = \ln \frac{\boldsymbol{k}^2}{Q_s^2(Y)} + c\bar{\alpha}_s Y$$
$$n_g(Y, \boldsymbol{k}) \approx \frac{1}{\alpha_s} \left(\frac{Q_s^2(Y)}{\boldsymbol{k}^2}\right)^{\gamma_s} \exp\left\{-\frac{\ln^2\left(\boldsymbol{k}^2/Q_s^2(Y)\right)}{2\beta\bar{\alpha}_s Y}\right\}$$
where $\gamma_s \equiv 1/2 + c/\beta \approx 0.64$.

4. Geometric Scaling

• The previous results suggests that for $k_{\perp} \leq Q_s(Y)$:

$$n_g(Y, \mathbf{k}) \approx \frac{A}{\bar{\alpha}_s} \left(\ln \frac{Q_s^2(Y)}{\mathbf{k}^2} + B \right)$$

where the numbers A and B are not under control.

- At saturation, the gluon distribution:
 i) scales as a function of τ ≡ Q_s²(Y)/k²;
 ii) it is marginally universal : it depends upon the initial conditions only logarithmically, via Q_s.
- What about k_{\perp} <u>above</u> but <u>near</u> Q_s ?

$$n_g(Y, \boldsymbol{k}) \approx \frac{C}{\bar{\alpha}_s} \left(\frac{Q_s^2(Y)}{\boldsymbol{k}^2} \right)^{\gamma_s} \exp\left\{ -\frac{\ln^2\left(\boldsymbol{k}^2/Q_s^2(Y)\right)}{2\beta\bar{\alpha}_s Y} \right\}$$

• If $k > Q_s$, but $\ln (k^2/Q_s^2(Y)) \ll \bar{\alpha}_s Y$, the diffusion term can be neglected:

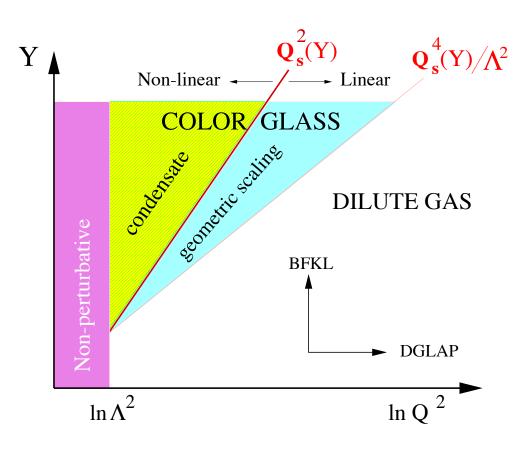
$$n_g(Y, \mathbf{k}) \approx \frac{C}{\bar{\alpha}_s} \left(\frac{Q_s^2(Y)}{\mathbf{k}^2}\right)^{\gamma_s}$$

 \implies approximate scaling persists above Q_s !

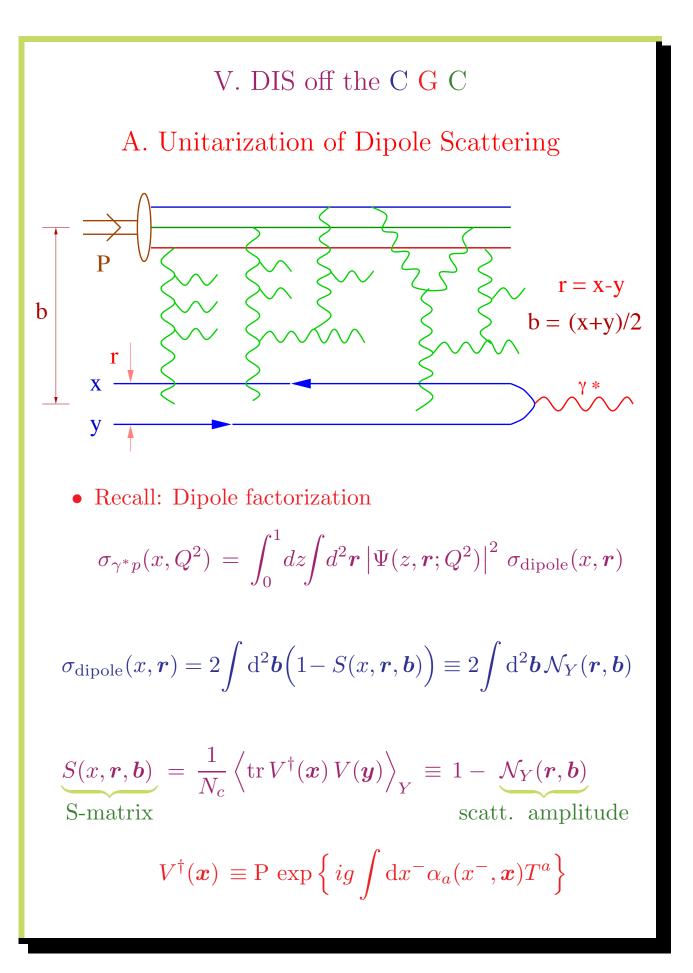
New anomalous dimension: $\gamma_s \approx 0.64$

 A natural explanation for the "geometric scaling" recently identified in the HERA data (see below).
 [Staśto, Golec-Biernat, and Kwieciński, 2000]

A "phase-diagram" for high-energy QCD



- Saturation line: $Q_s^2(Y) \simeq Q_0^2 e^{\lambda Y}$
 - $\lambda = 4.84(\alpha_s N_c/\pi) \simeq 1$ at LO BFKL level $\lambda \approx 0.3$ for $Y = 5 \cdots 9$ from NLO BFKL equation (Triantafyllopoulos, 02)
- "Extended scaling" : $Q_s^2(Y) < Q^2 < Q_s^4(Y)/Q_0^2$ Scaling window \approx BFKL window
- Scaling <u>violation</u> by the "diffusion" term



• Weak field (low density) regime: $V^{\dagger}(\boldsymbol{x}) \approx 1 + ig\alpha(\boldsymbol{x})$

$$\mathcal{N}_Y(\boldsymbol{r}) \sim lpha_s \boldsymbol{r}^2 \; rac{x G(x, 1/\boldsymbol{r}^2)}{\pi R^2}$$

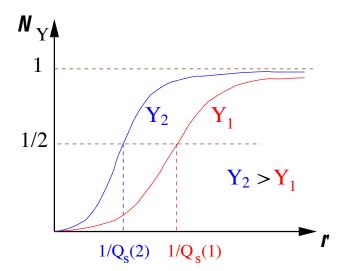
 \implies for x low enough and/or r large enough: Violation of the unitarity bound $\mathcal{N}_Y(\mathbf{r}) \leq 1$!

• However, when $r \gtrsim 1/Q_s(Y)$, the dipole is probing strong fields $(g\alpha \sim 1)$, for which :

$$\langle V^{\dagger}(\boldsymbol{x})V(\boldsymbol{y})\rangle_{Y} \ll 1 \text{ for } |\boldsymbol{x}-\boldsymbol{y}| \gg 1/Q_{s}(Y)$$

 $1/Q_s(Y)$: correlation length for the Wilson lines

• Dipole Unitarization: $\mathcal{N}_Y(\mathbf{r}) \sim 1$ for $r \gtrsim 1/Q_s(Y)$



• For an inhomogeneous target, this holds at fixed impact parameter:

 $\mathcal{N}_Y(\boldsymbol{r}, \boldsymbol{b}) \simeq 1$ ("blackness") for $r \gtrsim 1/Q_s(Y, \boldsymbol{b})$

B. The Balitsky–Kovchegov equation

• An evolution equation for $S_Y(\boldsymbol{x}, \boldsymbol{y})$:

$$\frac{\partial}{\partial Y} \langle \operatorname{tr}(V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{y}}) \rangle_{Y} = \alpha_{s} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^{2}}{(\boldsymbol{x} - \boldsymbol{z})^{2} (\boldsymbol{y} - \boldsymbol{z})^{2}} \\ \left\langle -N_{c} \underbrace{\operatorname{tr}(V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{y}})}_{2\text{-point ftion}} + \underbrace{\operatorname{tr}(V_{\boldsymbol{x}}^{\dagger} V_{\boldsymbol{z}}) \operatorname{tr}(V_{\boldsymbol{z}}^{\dagger} V_{\boldsymbol{y}})}_{4\text{-point ftion}} \right\rangle_{Y}$$

- Balitsky (96): First equation in an infinite hierarchy!
- A <u>closed</u> equation can be obtained assuming only 2-point correlations + Large $N_c \gg 1$:
 - $\left\langle \operatorname{tr}(V_{\boldsymbol{x}}^{\dagger}V_{\boldsymbol{z}})\operatorname{tr}(V_{\boldsymbol{z}}^{\dagger}V_{\boldsymbol{y}})\right\rangle_{Y} \approx \left\langle \operatorname{tr}(V_{\boldsymbol{x}}^{\dagger}V_{\boldsymbol{z}})\right\rangle_{Y} \left\langle \operatorname{tr}(V_{\boldsymbol{z}}^{\dagger}V_{\boldsymbol{y}})\right\rangle_{Y}$ \Longrightarrow Kovchegov's equation (99):

$$\frac{\partial}{\partial Y} S_Y(\boldsymbol{x}, \boldsymbol{y}) = \bar{\alpha}_s \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \\ \left\{ -S_Y(\boldsymbol{x}, \boldsymbol{y}) + S_Y(\boldsymbol{x}, \boldsymbol{z}) S_Y(\boldsymbol{z}, \boldsymbol{y}) \right\}$$

Strictly justified, e.g., for a large nucleus $(A \gg 1)$. Simple toy equation to study unitarization !

• Alternatively, an equation for $\mathcal{N}_Y = 1 - \mathcal{S}_Y$:

$$\frac{\partial}{\partial Y} \mathcal{N}_{Y}(\boldsymbol{x}, \boldsymbol{y}) = \bar{\alpha}_{s} \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^{2}}{(\boldsymbol{x} - \boldsymbol{z})^{2} (\boldsymbol{y} - \boldsymbol{z})^{2}} \left\{ \underbrace{-\mathcal{N}_{Y}(\boldsymbol{x}, \boldsymbol{y}) + \mathcal{N}_{Y}(\boldsymbol{x}, \boldsymbol{z}) + \mathcal{N}_{Y}(\boldsymbol{z}, \boldsymbol{y})}_{\text{BFKL}} \underbrace{-\mathcal{N}_{Y}(\boldsymbol{x}, \boldsymbol{z}) \mathcal{N}_{Y}(\boldsymbol{z}, \boldsymbol{y})}_{\text{Non-linear}} \right\}$$

- Very complete numerical studies, which exhibit :
 - unitarization $(\mathcal{N}_Y \simeq 1)$ for $r \gtrsim 1/Q_s(Y)$
 - the energy dependence of $Q_s(Y)$

[Armesto, Braun, 01; Golec-Biernat, Motyka, Stasto, 01]

— suppression of infrared diffusion

[Golec-Biernat, Motyka, Stasto, 01]

— geometric scaling at saturation $(r \gtrsim 1/Q_s)$

— geometric scaling <u>below</u> saturation $(r < 1/Q_s)$, down to rather small values of $rQ_s(Y)$.

[Levin, Tuchin, 01; Golec-Biernat, Motyka, Stasto, 01; Lublinsky, 02]

— impact parameter dependence and violation of Froissart bound [Golec-Biernat, Stasto, 03]

— applications to the phenomenology of DIS at HERA [Gotsman, Levin, Lublinsky, Maor (02)] and of heavy ion collisions at RHIC ("Cronin effect") [Albacete, Armesto, Kovner, Salgado, Wiedemann, 03]

• All these features have been confirmed and further studied by Rummukainen, Weigert (03), via a <u>direct resolution of the functional RGE on a lattice.</u> Approximate analytic solutions: Physical content is even more manifest ! Kovchegov, 99; Levin, Tuchin, 00–01; E.I., McLerran, 2001;

E.I., Itakura, McLerran, 2002; Mueller, Triantafyllopoulos, 02;E.I., Mueller 03; Munier, Peschanski, 03

• Small dipole $(r \ll 1/Q_s(Y)) \Longrightarrow BFKL$ eq.

$$\mathcal{N}_{Y}(\boldsymbol{r}) \approx \left(\boldsymbol{r}^{2} Q_{0}^{2}\right)^{1/2} \mathrm{e}^{\omega \bar{\alpha}_{s} Y} \exp\left\{-\frac{\ln^{2}\left(1/\boldsymbol{r}^{2} Q_{0}^{2}\right)}{2\beta \bar{\alpha}_{s} Y}\right\}$$

• Saturation condition: $\mathcal{N}_Y(\mathbf{r}) \sim \mathcal{N}_0$ when $r \sim 1/Q_s(Y)$ (say, $\mathcal{N}_0 = 0.5$)

$$Q_s^2(Y) \simeq Q_0^2 e^{\lambda Y}$$
 with $\lambda \simeq 4.8 \bar{\alpha}_s$

• Replace Q_0 by $Q_s(Y)$ as the reference scale:

$$\mathcal{N}_{Y}(\boldsymbol{r}) \approx \mathcal{N}_{0} \left(\boldsymbol{r}^{2} Q_{0}^{2}\right)^{\gamma_{s}} \exp\left\{-\frac{\ln^{2}\left(1/\boldsymbol{r}^{2} Q_{s}^{2}(Y)\right)}{2\beta \bar{\alpha}_{s} Y}\right\}$$

• For r near $1/Q_s(Y) \Longrightarrow$ Geometric scaling :

$$\mathcal{N}_Y(\boldsymbol{r}) \approx \mathcal{N}_0 \left(\boldsymbol{r}^2 Q_0^2 \right)^{\gamma_s}$$
 with $\gamma_s \simeq 0.63$

• Large dipole: $r \gg 1/Q_s(Y) \Longrightarrow$ Simple eq. for $S_Y(r)$ $\mathcal{N}_Y(r) \approx 1 - \kappa \exp\left\{-\frac{1}{4c}\ln^2\left(r^2Q_s^2(Y)\right)\right\}$

with $c \simeq 4.8$ [Levin, Tuchin, 00; E.I., Mueller 03]

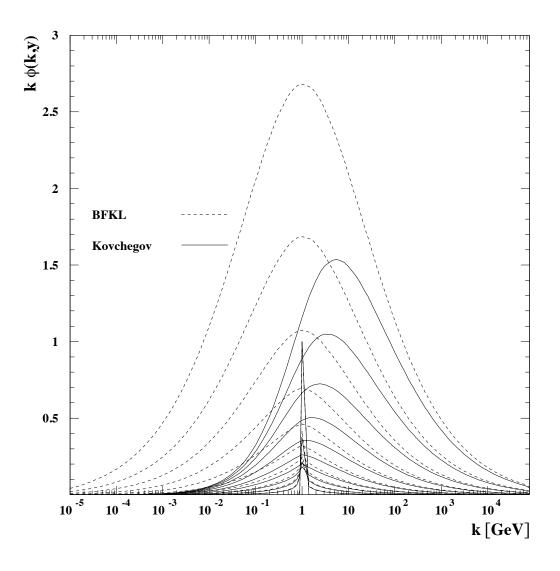


Figure 1: The functions $k\phi(k, Y)$ constructed from solutions to the BFKL and the Balitsky-Kovchegov equations for different values of the evolution parameter $Y = \ln(1/x)$ ranging from 1 to 10. The coupling constant $\alpha_s = 0.2$.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65 (2002) 074037; hep-ph/0110325

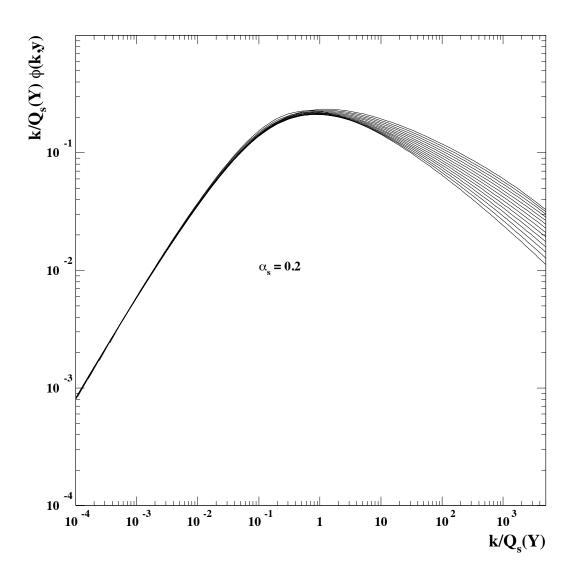


Figure 2: The function $(k/Q_s(Y)) \phi(k, Y)$ plotted versus $k/Q_s(Y)$ for different values of rapidity Y ranging from 10 to 23. The saturation scale $Q_s(Y)$ corresponds to the position of the maximum of the function $k \phi(k, Y)$.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65 (2002) 074037; hep-ph/0110325

C. Saturation & Geometric Scaling at HERA

1. The Golec-Biernat–Wüsthoff model (1999)

$$\sigma_{
m dipole}(x, \boldsymbol{r}) = \sigma_0 \left(1 - \exp\left\{ -\frac{\boldsymbol{r}^2 Q_s^2(x)}{4} \right\}
ight)$$

$$Q_s^2(x) = 1 \text{GeV}^2 \left(x_0 / x \right)^{\lambda}$$

• "Saturation" : unitarization $(\sigma_{\text{dipole}}(x, r_{\perp}) \simeq \sigma_0)$ over a <u>energy dependent</u> scale $1/Q_s(x)$

- High $Q^2 \gg Q_s^2(x)$: $F_2(x, Q^2) \sim \sigma_0 Q_s^2(x) \ln (Q^2/Q_s^2(x)) \propto x^{-\lambda}$ $Q_s(x)$ acts effectively as an infrared cutoff
- Low $Q^2 \ll Q_s^2(x)$: $F_2(x, Q^2) \sim \sigma_0 Q^2 \ln (Q_s^2(x)/Q^2) \propto \ln(1/x)$
- Remarkably good fit to the (old) small-x data at HERA (F_2, F_2^D) at x < 0.01 with only 3 parameters $\sigma_0 = 23 \text{ mb}, \quad x_0 = 3 \times 10^{-4}, \quad \lambda \simeq 0.3$
- 'Hard' saturation scale: $Q_s \ge 1$ GeV for $x \le 10^{-4}$
- Good description of the 'hard–to–soft' transition in F_2 with lowering Q^2
- No QCD evolution at small r_{\perp} : $\sigma_{\text{dipole}}(x, \mathbf{r}) \propto \mathbf{r}^2 Q_s^2(x)$ instead of $\mathbf{r}^2 x G(x, 1/\mathbf{r}^2)$
- No impact parameter dependence

Transition to low Q²

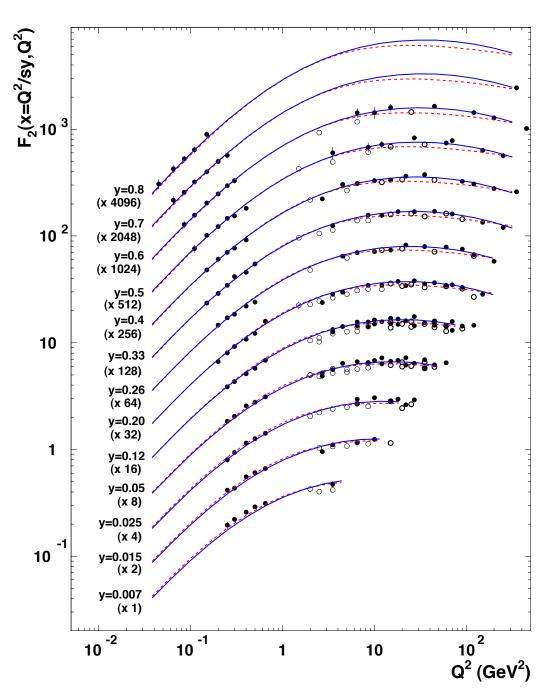


Figure 3: $F_2(x,Q^2)$ as a function of Q^2 for fixed $y = Q^2/(sx)$. The solid lines: the model with DGLAP evolution by BGBK and the dashed lines: the saturation model by GBW. The curves are plotted for x < 0.01. Full circles: ZEUS data and open circles: H1 data.

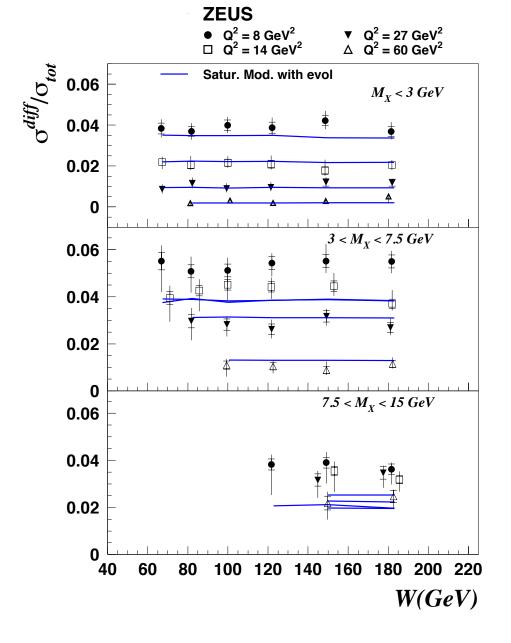
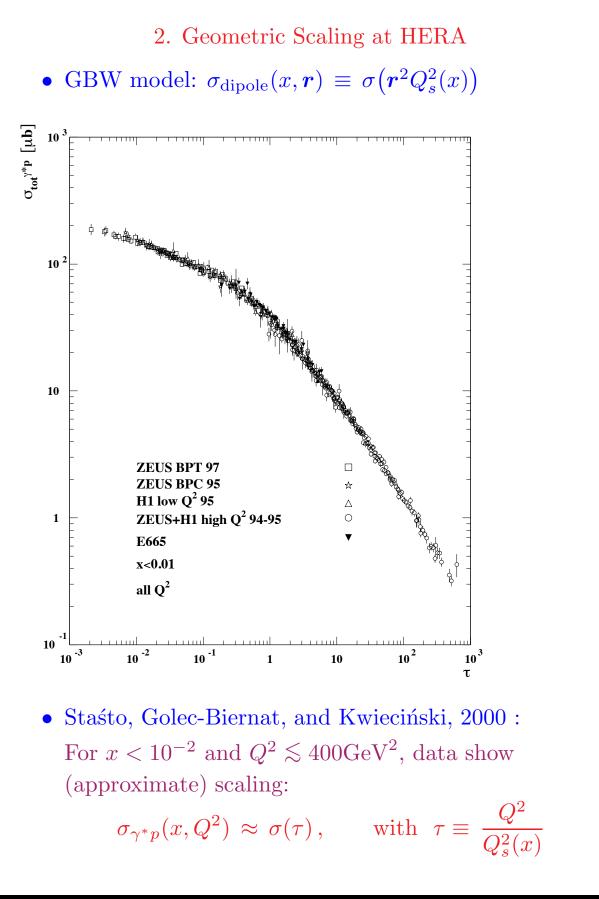


Figure 4: The ratio of $\sigma_{diff}/\sigma_{tot}$ versus the $\gamma^* p$ energy W. The data is from ZEUS and the solid lines correspond to the results of the DGLAP improved model with massless quarks (BGBK).



3. A CGC fit to the HERA data

• Improving the GBW model:

— DGLAP improvement by Bartels, Golec-Biernat, Kowalski (02)

$$\sigma_{\text{dipole}}(x, \boldsymbol{r}) = \sigma_0 \Big(1 - \exp\{-\alpha_s \boldsymbol{r}^2 x G(x, 1/\boldsymbol{r}^2)\} \Big)$$

(Glauber-like exponentiation)

— Adding the b-dependence: Kowalski, Teaney (03)

$$xG(x, 1/r^2)T(b)$$
 with $T(B) = \frac{1}{2\pi R^2} \exp(-b^2/2R)$

Adding BK dynamics by Gotsman, Levin,
 Lublinsky, Maor (03)

Numerical matching of BK and DGLAP

 \implies Rather good global fits !

- Can we directly probe the <u>BFKL</u> dynamics towards saturation ?
 - Anomalous dimension < 1
 - Geometric scaling near Q_s
 - Scaling violations by the diffusion term
 - Saturation exponent $\lambda \simeq 0.3$
- Focus on smallish Q^2 : up to 50 GeV²
- Use analytic results for the dipole amplitude

• The CGC fit (E.I., Itakura, Munier, 03)

$$\sigma_{\text{dipole}}(x, \boldsymbol{r}) = 2\pi R^2 \mathcal{N}(rQ_s, Y)$$

$$\mathcal{N}(rQ_s, Y) = \mathcal{N}_0 \left(\frac{r^2 Q_s^2}{4}\right)^{\gamma + \frac{\ln(2/rQ_s)}{\kappa\lambda Y}} \text{ for } rQ_s \le 2,$$

$$\mathcal{N}(rQ_s, Y) = 1 - e^{-a\ln^2(b rQ_s)} \text{ for } rQ_s > 2,$$

$$Q_s \equiv Q_s(x) = (x_0/x)^{\lambda/2} \text{ GeV}$$

 $\gamma = 0.63, \quad \kappa = 9.9 \text{ (fixed by BFKL)}$

- a, b: fixed by continuity at $rQ_s = 2$
- \implies The same 3 parameters as in the GBW model: $R, x_0 \text{ and } \lambda$
- BFKL anomalous dimension at saturation : $\gamma = 0.63$
- Effective anomalous dimension :

$$\gamma_{\rm eff}(rQ_s, Y) \equiv -\frac{d\ln\mathcal{N}(rQ_s, Y)}{d\ln(4/r^2Q_s^2)} = \gamma_s + 2\frac{\ln(2/rQ_s)}{\kappa\lambda Y}$$

 \implies Scaling violation !

• Fit to the ZEUS data for $F_2(x, Q^2)$ within the range:

$$x \le 10^{-2}$$
 and $0.045 \le Q^2 \le 45 \,\mathrm{GeV}^2$

(156 data points)

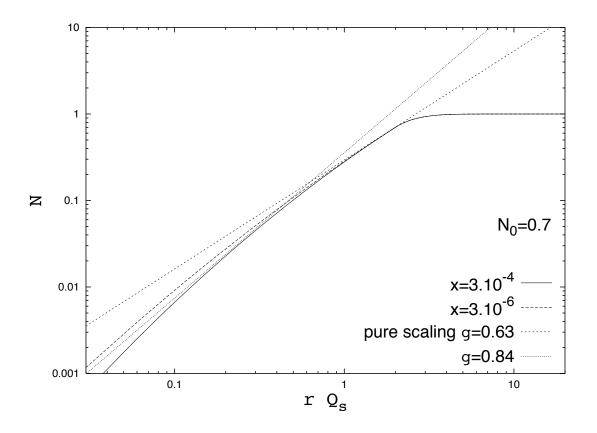


Figure 5: The dipole amplitude for two values of x, compared to the pure scaling functions with "anomalous dimension" $\gamma = \gamma_s = 0.63$ and $\gamma = 0.84$.

$$\gamma_{\text{eff}}(rQ_s, Y) \equiv -\frac{d\ln\mathcal{N}(rQ_s, Y)}{d\ln(4/r^2Q_s^2)} = \gamma_s + 2\frac{\ln(2/rQ_s)}{\kappa\lambda Y}$$

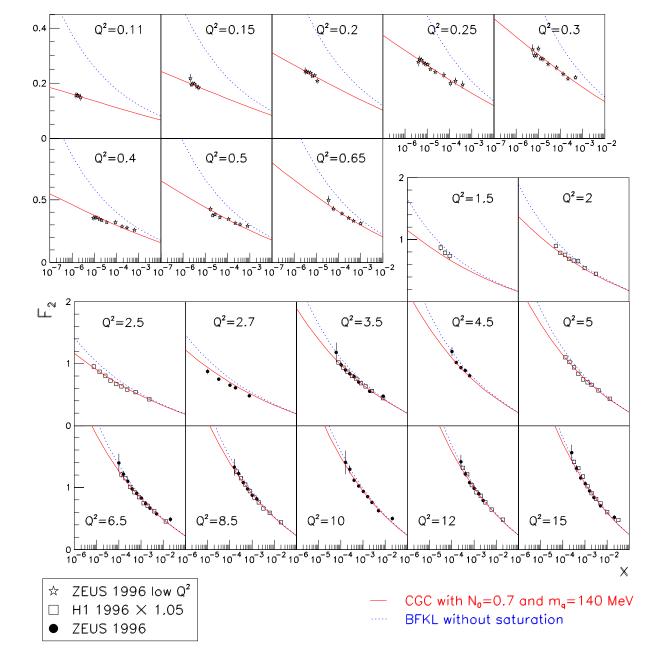


Figure 6: The F_2 structure function in bins of Q^2 for small (upper part) and moderate (lower part) values of Q^2 . The full line shows the result of the CGC fit with $\mathcal{N}_0 = 0.7$ to the ZEUS data for $x \leq 10^{-2}$ and $Q^2 \leq 45$ GeV². The dashed line shows the predictions of the pure BFKL part of the fit (no saturation).

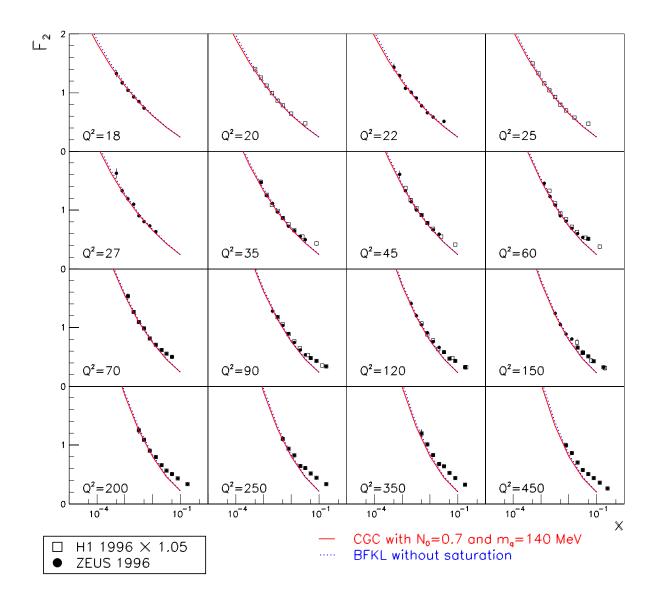


Figure 7: The same as before, but for large Q^2 . Note that in the bins with $Q^2 \ge 60 \,\text{GeV}^2$, the CGC fit is extrapolated outside the range of the fit ($Q^2 < 50 \,\text{GeV}^2$ and $x \le 10^{-2}$), to better emphasize its limitations.

$\mathcal{N}_0/\mathrm{model}$	0.5	0.6	0.7	0.8	0.9	GBW
χ^2	146.43	129.88	123.63	125.61	133.73	243.87
$\chi^2/{ m d.o.f}$	0.96	0.85	0.81	0.82	0.87	1.59
$x_0 (\times 10^{-4})$	0.669	0.435	0.267	0.171	0.108	4.45
λ	0.252	0.254	0.253	0.252	0.250	0.286
$R \ ({\rm fm})$	0.692	0.660	0.641	0.627	0.618	0.585

Table 1: The CGC fits for different values of \mathcal{N}_0 and 3 quark flavors with mass $m_q = 140$ MeV. Also shown is the fit obtained by using the GBW model.

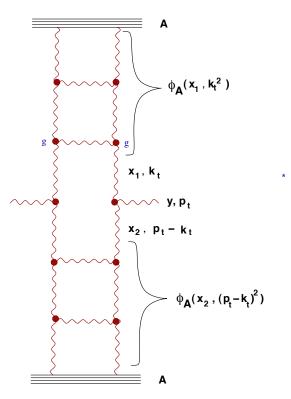
	$m_q = 50 \text{ MeV}$			$m_q = 10 \text{ MeV}$		
\mathcal{N}_0	0.5	0.7	0.9	0.5	0.7	0.9
χ^2	148.02	108.52	108.76	149.27	107.64	106.49
$\chi^2/d.o.f$	0.97	0.71	0.71	0.98	0.70	0.70
$x_0 (\times 10^{-4})$	2.77	0.898	0.333	3.32	1.06	0.382
λ	0.290	0.281	0.274	0.295	0.285	0.276
$R \ (\mathrm{fm})$	0.604	0.574	0.561	0.593	0.566	0.554

Table 2: The CGC fits for three values of \mathcal{N}_0 and quark masses $m_q = 50 \text{ MeV}$ (left) and $m_q = 10 \text{ MeV}$ (right).

1) $0.25 < \lambda < 0.29$ is in agreement with the NLO BFKL calculation by Triantafyllopoulos (02)

2) Scaling <u>violation</u> is essential to describe the data.

3) Remarkable agreement even at $Q^2 \ll 1 \text{ GeV}^2$ (quark-hadron duality) VI. Saturation Physics at RHIC Geometric Scaling and High- p_{\perp} Suppression Kharzeev, Levin, McLerran (02)



 $\frac{dN}{dyd^2p_{\perp}} = \frac{\alpha_s}{\pi R_A^2} \frac{1}{p_{\perp}^2} \int dk_{\perp}^2 \alpha_s \varphi_A(x_1, k_{\perp}^2) \varphi_A(x_2, (p-k)_{\perp}^2)$

• $\varphi_A(x, k_{\perp}^2)$ = the unintegrated gluon distribution

•
$$x_{1,2} = (p_{\perp}/\sqrt{s}) \exp(\pm \eta)$$

- η = the (pseudo)rapidity of the produced gluon
- $\pi R_A^2 \propto N_{part}^{2/3}$ = the nuclear overlap area
- $Q_s^2(x, A) \propto N_{part}^{1/3}$ = the saturation momentum for the considered centrality

• High
$$p_{\perp} \gg Q_s^2(x)/\Lambda$$
 : $\varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2}{\alpha_s} \frac{Q_s^2}{k_{\perp}^2}$
 $\frac{dN}{dy d^2 p_{\perp}} \sim \frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{p_{\perp}^2} dk_{\perp}^2 \frac{Q_s^2}{k_{\perp}^2} \frac{Q_s^2}{p_{\perp}^2} \sim \frac{\pi R_A^2 Q_s^4}{\alpha_s p_{\perp}^4} \sim N_{\text{coll}}$
• $Q_s(x) < p_{\perp} < Q_s^2(x)/\Lambda$: $\varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2}{\alpha_s} (Q_s^2/k_{\perp}^2)^{1/2}$
 $\frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{p_{\perp}^2} dk_{\perp}^2 \left(\frac{Q_s^2}{k_{\perp}^2}\right)^{1/2} \left(\frac{Q_s^2}{p_{\perp}^2}\right)^{1/2} \sim \frac{\pi R_A^2 Q_s^2}{\alpha_s p_{\perp}^2} \sim N_{\text{part}}$
• Low $p_{\perp} < Q_s(x)$: $\varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2}{\alpha_s}$
 $\frac{dN}{dy d^2 p_{\perp}} \sim \frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{Q_s^2} dk_{\perp}^2 \sim \frac{\pi R_A^2 Q_s^2}{\alpha_s p_{\perp}^2} \sim N_{\text{part}}$

• "Nuclear modification factor":

The ratio of the AA to the p + p hadron yields scaled by nuclear geometry (T_{AB}) :

$$R_{AA}(p_T) = \frac{d^2 N_{AA}^{\pi^0} / dy dp_T}{\langle T_{AB} \rangle \times d^2 \sigma_{pp}^{\pi^0} / dy dp_T}$$

 $R_{AA}(p_T)$ measures the deviation of AA from an incoherent superposition of NN collisions in terms of suppression ($R_{AA} < 1$) or enhancement ($R_{AA} > 1$).

The RHIC data for Au–Au collision at $s = 130 \text{ GeV}^2$ and $s = 200 \text{ GeV}^2$ show a <u>significant suppression</u> (by a factor of 4 to 5), and are consistent within the error bars with N_{part} -scaling !



Figure 8: Invariant π^0 yields measured by PHENIX in peripheral (*left*) and in central (*right*) Au+Au collisions (stars), compared to the N_{coll} scaled p+p π^0 yields (circles) and to a NLO pQCD calculation (gray line). The yellow band around the scaled p+p points includes in quadrature the absolute normalization errors in the p+p and Au+Au spectra as well as the uncertainties in T_{AB} . From the recent review by D. d'Enterria, puel or (0200015)

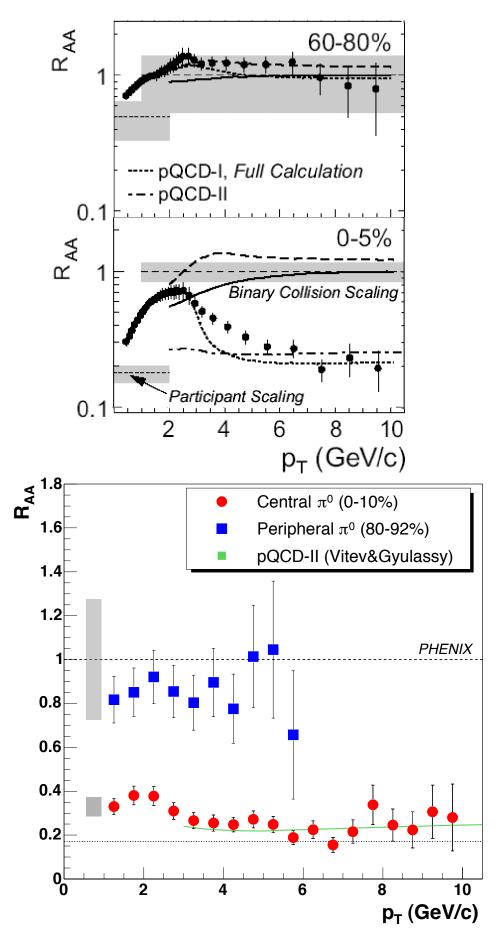


Figure 9: Nuclear modification factor, $R_{AA}(p_T)$, in peripheral and central Au+Au reactions for charged hadrons (*left*) and π^0 (*right*) measured at $\sqrt{s_{NN}} = 200$ GeV by STAR and PHENIX respectively. A comparison to theoretical curves:

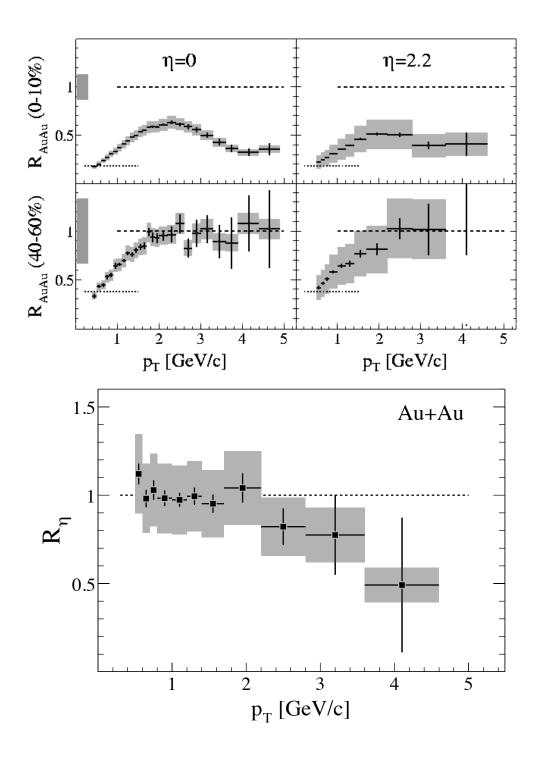


Figure 10: Left: $R_{AA}(p_T)$ measured by BRAHMS at $\eta = 0$ and $\eta = 2.2$ for 0–10% most central and for semi-peripheral (40-60%) Au+Au collisions. Right: Ratio R_{η} of R_{cp} distributions at $\eta = 2.2$ and $\eta = 0$. From D. d'Enterria, nuclex/0309015