
IV. The Colour Glass Condensate

A. Effective theory for the small–x gluons

• The small–x gluons ≈ Classical color fields radiated
by the fast partons with x′ > x

(
DνF

νµ
)

a
(x) = Jµ

a (x)

Jµ
a (x) = the color current due to the fast partons.

Dν = ∂ν − igAa
νT a, Dab

ν = ∂νδab − gfabcAc
ν

• The structure of the color current
The fast partons move nearly at the speed of light in
the positive z (or x+) direction.
=⇒ Jµ

a has only a ‘plus’ component: Jµ
a = δµ+ρa

=⇒ ρa is localized near the light-cone: ρa ∝ δ(x−)
=⇒ ρa is independent of LC time x+

Jµ
a (x) ≈ δµ+δ(x−)ρa(x)

• The color charge density ρa(x) : a random variable
with correlations 〈ρ · · · ρ〉x determined by the
dynamics at the larger scales x′ > x

=⇒ Weight function(al) Wx[ρ] (gauge–invariant)
〈
F+i

a (x+, $x)F+i
a (x+, $y)

〉
x

=
∫

D[ρ] Wx[ρ] F+i
a ($x)F+i

a ($y)

F+i
a = ∂+Ai

a[ρ] : the classical solution in LC gauge.



small-x gluon

fast partons

k
[ ]

+ = xP+

• With decreasing x, new modes become relatively
fast, and must be included in the classical source ρ
=⇒ Evolution of the weight function Wx[ρ] with x

• Quantum evolution is computed in perturb. theory,
by integrating out the fast gluons in layers of x :
— leading–log 1/x for the newly radiated gluons
— to all orders in the classical field A[ρ] generated
by the color source constructed in previous steps
=⇒ Functional evolution equation for Wx[ρ] :

∂WY [ρ]
∂Y

= −αs H
[
ρ,
∂

∂ρ

]
WY [ρ]

• Classical theory (a stochastic Yang–Mills theory)
+ Quantum evolution =⇒ An effective theory

• Main difference w.r.t. BFKL: non–linear effects
A ∼ 1/g : non–linear effects must be treated exactly !
−→ exact solution A[ρ] to the classical EOM;
−→ exact background field quantum calculation.



Why “C G C”

• “Color” : Obvious !

• “Glass”: Separation in time scales between the

small–x gluons and their fast sources

Fast partons (x′ ) x) are frozen over the natural
time scale for dynamics at x, namely:

τ(x) ∼ 2k+

k2
∼ 2P+

k2
x

One can therefore solve the dynamics of the small–x
gluons at fixed distribution of the fast partons, and
only then average over the latter.

A similar situation: “spin glass”

Collection of magnetic impurities (“spins”) randomly
distributed on a non–magnetic lattice.

spins ←→ small–x gluons

spin positions ←→ color charge ρ

• “Condensate” : Coherent state with high quantum

occupancy (∼ 1/αs at saturation)

dN

dY d2k d2b
∼ 1
αs

for k2 <∼ Q2
s(Y )



B. The classical solution A[ρ]

• What is the color field of a fast moving gluon ?

• Recall the corresponding problem in QED:
The Weiszäcker–Williams field of a fast (v + c)
charged particle.

• Start in the particle rest frame: a static electric field,
radially oriented (spherical symmetry).

• Make a boost with velocity v along z :

q q
 Boost

E

• A magnetic field is generated: B = v ×E

• As v → c : Ez → 0 and Bz → 0
Also: Ex = By , Ey = −Bx (E⊥ ·B⊥ = 0)



• Fields localized at z = t, or x− ≡ (t− z)/
√

2 = 0,
and independent of x+ ≡ (t + z)/

√
2 (plane wave)

• LC variables: the only non-zero field strength is
F+i =

√
2 Ei =

√
2 εijBj

• Maxwell eqs: ∂νFµν = δµ+ρ with ρ = δ(x−)ρ(x)

F+i = ∂i 1
∇2

⊥
ρ ≡ −∂iα, with −∇2

⊥α = ρ

α ≡ A+ in the COV–gauge ∂µAµ = 0

• The non-Abelian problem: DνF νµ = δµ+ρ($x)
The COV–gauge solution is simple again !

Aµ
a($x) = δµ+αa($x) with −∇2

⊥αa = ρa

• Explicitly

αa(x−, x) =
∫

d2y

4π
ln

1
(x− y)2Λ2

ρa(x−, y)

=⇒ IR cutoff Λ2 for the transverse dynamics
=⇒ locality in x−

• But gauge–invariant observables remain non–linear,
as they involve Wilson lines built with A+ = α !

• Obvious for dipole scattering :

S =⇒ V †(x) ≡ P exp
{

ig

∫
dx−αa(x−, x)ta

}



Exercice The gluon distribution involve the
gauge-invariant operator Oγ . Show that, when
evaluated in the COV–gauge, this operator reads:

Oγ($x, $y)
∣∣∣
COV

= Tr
{

V ($x)F i+($x)V †($x)︸ ︷︷ ︸
Fi+(#x)|LC

V ($y)F i+($y) V †($y)
}

F i+ = ∂iα, V †(x−, x) ≡ P exp
{
ig

∫ x−

−∞
dz−αa(z−, x)T a

}

• NB: The longitudinal (x−) structure of ρ (or α)

does matter : P e ig
∫

dx−αa(x−)T a 0= e ig αaT a

=⇒ one cannot simply use α(x−, x) = δ(x−)α(x)

Rather: ρ (and α) is quasi–localized near x− = 0

within a distance ∆x− ∼ 1/k+ = 1/xP+

Smaller is x, more is the hadron (CGC) extended in x−

x- x+

1/q1/xP+

z

t

-

External probe: localized in x+ (∆x+ ∼ 1/q−) but
extended in x−: {A+(x+ + 0, x−), −∞ < x− <∞}



C. The gluon distribution of the valence quarks
(McLerran–Venugopalan model, 94)

• The valence quarks: the only fast partons
— x not too small (say x > 0.01), so one can neglect
quantum evolution;
— a model for the initial condition for the evolution
towards smaller values of x.

• Large nucleus (A) 1) [like at RHIC] :
=⇒ Many color sources (Nc ×A) !
=⇒ A strong field even without quantum evolution !

• How to formulate this as a Color Glass ?

• A small (1/Q2 Rp =) dipole “sees” valence quarks
from different nucleons =⇒ uncorrelated

x

z

〈ρa(x)ρb(y)〉A = δabδ(x− y) µA(x)

µA(x) = color charge squared per unit transverse area.

• Large nucleus ≈ homogeneous =⇒ no x dependence



〈Q2〉A = (gta)(gta)NcA = g2CF NcA

〈Q2〉A =
∫

d2x
∫

d2y 〈ρa(x)ρa(y)〉A = (N2
c − 1)πR2

AµA

=⇒ µA =
g2A

2πR2
A

=
2αsA

R2
A

∼ αsA
1/3

• Weight function WA[ρ] : a Gaussian with width µA

• Gluon distribution in the weak field limit

fA(k2) = πk2 dN

dY d2k
=

k2

(2π)2
〈∣∣F+i

a (k)
∣∣2〉

A

Weak fields =⇒ Linearized EOM =⇒ F+i ≈ i(ki/k2)ρ

fA(k2) ≈ 1
(2π)2

〈ρa(k)ρa(−k)〉A

fA(k2) ≈ ANc (αsCF /π) ≡ ANc fq(k2)

• The integrated gluon distribution (weak field)

xGA(x, Q2) ≈ (N2
c − 1)πR2

A

∫ Q2
dk2

(2π)2
µA

k2

≈ ANc
αsCF

π
ln

Q2

Λ2

=⇒ Infrared divergence !
Why ? No x⊥–correlations among the color sources !

• One expects quantum evolution towards small x to
introduce correlations and energy dependence :

µA −→ µA(Y, k)



D. The Renormalization Group at Small–x

• ρ and its correlators change with decreasing x.

• Because of non–linear effects, the evolution couples
n–point functions 〈ρ(1)ρ(2)· · ·ρ(n)〉x with different n.

• It is most conveniently formulated as a functional
evolution equation for the weight function Wx[ρ]

• Strategy: Integrate out quantum fluctuations in
layers of k+ (or of x, or of rapidity Y = ln(1/x)).
i) Start with the effective theory at scale Λ+ = xP+.
The fast partons with k+ > Λ+ have been already
integrated out.
ii) Compute correlation functions at a new scale bΛ+

with b2 1 but such that αs ln(1/b) < 1.
These include:
— classical correlations associated with ρ and
described by Wx[ρ]
— quantum correlations associated with the
‘semi–fast’ partons with bΛ+ < k+ < Λ+.
Quantum corrections are computed to O(αs ln(1/b))
but to all orders in the classical field A[ρ]
iii) Reinterpret the quantum corrections as classical
correlations associated with a (functional) change in
the weight function: Wx[ρ]→Wx′ [ρ] = Wx + dWx

(with x′ = bx2 x). This fixes dWx[ρ].



< x  < xx’

x’x’

+

,W [ ]x

x
1

,

x’

x’W [ ]

x’ = bx < x

• One-loop calculation with the Background–Field
Propagator:

. . . .

• Since dWx ∝ αs ln(x/x′) ≡ αsdY , this evolution is
rewritten as a differential equation in Y :

∂WY [ρ]
∂Y

=
1
2

∫

x,y

δ

δρa
Y (x)

χab
xy[ρ]

δ

δρb
Y (y)

WY [ρ]

Renormalization Group Equation at small–x.

Also known as “JIMWLK equation” (cf. A. Mueller)

Jalilian-Marian, Kovner, Leonidov, Weigert, 97;

Weigert, 2000; Iancu, Leonidov, McLerran, 2000

• A second–order functional differential equation.



• At each step Y → Y + dY in the evolution, only the
1-point and 2-point correlations of ρ need be adjusted:

χab(x, y)[ρ] = 〈δρa
Y (x)δρb

Y (y)〉ρ, σa(x)[ρ] = 〈δρa
Y (x)〉ρ

• χ, σ : generalizations of the real and virtual parts of
the BFKL kernel including background field effects :

;= ==

σa(x) =
1
2

∫
d2y

δχab(x, y)
δρb

Y (y)
Functional relation σ ←→ χ ensures the cancellation
of infrared divergences in gauge–invariant quantities.

• Change of variables : ρa −→ αa with −∇2
⊥αa = ρa

∂WY [α]
∂Y

=
1
2

∫

x,y

δ

δαa
Y (x)

χab
xy[α]

δ

δαb
Y (y)

WY [α]

• χ depends upon α via Wilson lines:

χab
xy[α] ≡

∫
d2z

π
Kxyz

[
(1− V †

xVz)(1− V †
z Vy)

]ab

Kxyz ≡
1

(2π)2
(x− z) · (y − z)
(x− z)2(z − y)2

• The coupling g enters only via the Wilson lines !



E. General consequences of the RGE

1. Longitudinal (x−) structure of α (or ρ)

• RGE: non–local in x⊥ and in x−

V †(x) ≡ P exp
{

ig

∫
dx−αa(x−, x)T a

}

• With decreasing x, the classical field extends in x−

Lower k+ = xP+ ⇐⇒ Increase ∆x− ∼ 1/k+

• For the theory at scale Λ+, the support of the field is
retricted to: x− < 1/Λ+

Λ+ → bΛ+ =⇒ δαΛ with support at 1/Λ+ < x− < 1/bΛ+

The new field δαΛ has no overlap with the previous one.

• The CGC is built in layers of x−.

supp {= < }

Y+dYY

P+

Y space-time

= ln(x-

Y

)

rapidity

~~ Y

• Wilson lines evolve by left (or right) multiplication:

V †
Y +dY = e ig δαa

Y T a

V †
Y

δ

δαa
Y (x)

V †
Y (y) = igT aV †

Y (x)δ(x− y)



2. Quantum Evolution as a Random Walk

• Since δαY ≡ αY dY is a random quantity, the
evolution defines a random walk on SU(3) :

Y = nε, V †
n (x) = e iεαa

n(x)T a

V †
n−1(x)

〈αa
n(x)〉 = σa

n−1(x), 〈αa
n(x)αb

n(y)〉 =
1
ε
χab

n−1(x, y)

σn−1 and χn−1 : functionals of Vn−1

• RGE: A functional Fokker–Planck equation with
“time” Y and “diffusion coefficient” χ[ρ] ≥ 0.
Blaizot, E.I., Weigert, 2002

• Recent numerical solution (lattice)
Rummukainen, Weigert, sept. 2003

• Recall: Brownian motion
Small particle in a viscous liquid =⇒ Random velocity:

dxα/dt = vα(t), 〈vα(t)vβ(t′)〉 = ν δαβδ(t− t′)

with α,β = 1, 3. With discretized time: t = nε

xα
n − xα

n−1 = ε vα
n , 〈vα

n vβ
r 〉 = (1/ε) ν δαβ δnr

• P (x, t) : probability to find the particle at point x

at time t. This obeys the diffusion (or FP) equation:

∂P (x, t)
∂t

= D
∂2P (x, t)
∂xα∂xα

, D ≡ ν2

• 〈(x− x0)2〉(t) = 6Dt : “runaway solution”



3. Evolution equations for correlations

• A functional, non–linear, equation for WY [α]
⇐⇒ An infinite hierarchy of ordinary equations for

the n–point functions 〈α(1)α(2)· · ·α(n)〉Y

• O[α] : any observable or correlation functions :

〈O[α] 〉Y =
∫

D[α] O[α] WY [α]

Take a derivative w.r.t. Y and use the RGE:
∂

∂Y
〈O[α]〉Y =

∫
D[α] O[α]

∂WY [α]
∂Y

=
〈

1
2

∫

xy

δ

δαa
Y (x)

χab
xy

δ

δαb
Y (y)

O[α]
〉

Y

• Example: O[α] = 〈α(x)α(y)〉Y
∂

∂Y
〈α(x)α(y)〉Y = 〈χ(x, y)〉Y +〈σ(x)α(y)〉Y +〈α(x)σ(y)〉Y

Via the Wilson lines within χ and σ, the r.h.s.
involves all the n–point functions with n ≥ 2 !

• Weak field (low density) regime: gα2 1

V †(x) ≈ 1 + ig
∫

dx−α(x−, x) ≡ 1 + igα(x)

1− V †
xVz ≈ −ig

(
α(x)− α(z)

)

=⇒ χ is quadratic in α, and σ is linear:
χ ∼ g2α2, σ ∼ g2α

=⇒ Closed equation for the 2-point function: BFKL



• Strong field (high density) regime: gα ∼ 1

This is relevant for correlations over large transverse
separations, or soft momenta:

|x− y| >∼ 1/Qs(Y ) or k2 <∼ Q2
s(Y )

gα(x) ∼ 1 and strongly varying over a (relatively
short) distance ∆x⊥ ∼ 1/Qs(Y )

=⇒Wilson lines V , V † : complex exponentials which
oscillate around zero over a distance ∼ 1/Qs(Y )

• When probed over distances large compared to
1/Qs, the Wilson lines average to zero: V , V † ≈ 0

〈V †(x)V (y)〉Y 2 1 for |x− y|) 1/Qs(Y )

Exercice Show than, when V , V † ≈ 0 :

χab(x, y) ≈ δab 1
π
〈x| 1
−∇2

⊥
|y〉, χab(k) ≈ δab 1

πk2

• The RGE reduces to free Brownian motion (no g !)
=⇒ Duality at Saturation [E.I., McLerran 01]

• In particular, the evolution of the 2-point function
reduces to :

∂

∂Y
〈α(k)α(−k)〉Y ≈ 1

πk2



F. Non–Linear Gluon Evolution:

Saturation & Geometric Scaling

• Focus on the charge–charge correlator 〈ρ(x)ρ(y)〉Y :
i) Interesting information about the spatial
distribution of the color charges.
ii) Access to the gluon distribution:

f(Y, k2) ∝ 〈ρa(k)ρa(−k)〉Y

• Initial condition: x + 10−1 · · · 10−2 =⇒ MV model

〈ρa(k)ρa(−k)〉Y = µ0 (no correlation)

• Weak fields (k2 ) Q2
s(Y )) =⇒ BFKL

〈ρa(k)ρa(−k)〉Y ≈
√

µ0 k2 eωαsY

• Strong fields (k2 2 Q2
s(Y )) =⇒ Free diffusion

〈ρa(k)ρa(−k)〉Y ≈ (k2/π)
(
Y − Ys(k)

)

• Y − Ys(k) = rapidity excursion in the saturation
regime for a given k :

Q2
s(Y ) = k2 for Y = Ys(k)

Q2
s(Y ) = Q2

0 e cαsY =⇒ Y − Ys(k) =
1

cαs
ln

Q2
s(Y )
k2



1. Color Neutrality at Saturation

〈ρ(k)ρ(−k)〉Y ∝ k2 for k2 < Q2
s(Y )

=⇒ Improved infrared behaviour

The behaviour expected from gauge symmetry !

Recall: In QED, the charge–charge correlator
Π00(k) = 〈ρρ〉 vanishes like k2 as k → 0.

• Physical interpretation:
Color neutrality over a typical size 1/Qs(τ)

Qa|∆Σ ≡
∫

∆Σ
d2x ρa(x) + 0 for ∆Σ >∼ 1/Q2

s

Q
S
-1

 
• The densely packed gluons shield their color charges

each other, to diminish their mutual repulsion, and
thus allow for a maximal density state.
(E.I., McLerran 01; A. Mueller, 02)

• When “seen” over distance scales ∆x⊥ > 1/Qs(Y ),
the gluons generate only dipolar color fields !



2. Gluon Saturation

• Gluon occupation number :

ng ≡
(2π)3

2 · (N2
c − 1)

dN

dY d2k d2b
+ 〈ρa(k)ρa(−k)〉Y

k2

• Very large k : ln k2 ) αsY (MV model, DGLAP) :

ng(Y, k) ≈ µ0

k2

• lnk2 ∼ αsY but k2 ) Q2
s(Y ) (BFKL) :

ng(Y, k) ≈
(µ0

k2

)1/2
eωαsY ∝ 1

xωαs

• k2 2 Q2
s(Y ) : ng(Y, k) ≈ 1

αs
ln

Q2
s(Y )
k2

∝ ln
1
x

QCD QS(x  QS(x  k

x
x2

1

k2
1~

2x

x1
x2

x1x2

gn

)1

1x 

ln

)2

<

• Power–law increase with 1/k and 1/x is replaced by
logarithmic behaviour =⇒ (marginal) saturation



• Condensate at Saturation:

ng(k⊥ <∼ Qs(Y )) ∼ 1/αs

• With increasing Y , new gluons are produced
predominantly at high momenta >∼ Qs(Y ).

0.1
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0.01 0.1 1 10 100 1000

(
k
)

k  / Qs( 0)

 = 0         
 = 0 +  2
 = 0 +  4
 = 0 +  6
 = 0 +  8

 = 0 +10

NB: Different notations:

τ ≡ Y and φτ (k⊥) ≡ ng(Y, k⊥)

• What is the saturation momentum ?



3. Saturation Momentum

• How to compute Qs(Y ) ?

• Approach the saturation scale from the above
(k⊥ ) Qs(Y )), where the linear BFKL eq. applies,
and use the saturation condition at k⊥ + Qs(Y ).

• Saturation condition :

ng(Y, k) ∼ 1
αs

for k ∼ Qs(Y )

• BFKL solution (k⊥ ) Qs(Y )) :

ng(Y, k) ≈
(

Q2
0

k2

)1/2

eωᾱsY exp
{
−

ln2 (
k2/Q2

0

)

2βᾱsY

}

Exercice Show that the saturation condition
together with the BFKL solution imply:

Q2
s(Y ) = Q2

0 e cᾱsY , c ≡
−β +

√
β(β + 8ω)
2

= 4.84...

• Controlled up to terms O(lnY ) in the exponent.

• Replace Q2
0 → Q2

s(Y ) as the reference scale :

ln
k2

Q2
0

= ln
k2

Q2
s(Y )

+ cᾱsY

ng(Y, k) ≈ 1
αs

(
Q2

s(Y )
k2

)γs

exp
{
−

ln2 (
k2/Q2

s(Y )
)

2βᾱsY

}

where γs ≡ 1/2 + c/β ≈ 0.64.



4. Geometric Scaling

• The previous results suggests that for k⊥ ≤ Qs(Y ) :

ng(Y, k) ≈ A

ᾱs

(
ln

Q2
s(Y )
k2

+ B
)

where the numbers A and B are not under control.

• At saturation, the gluon distribution:

i) scales as a function of τ ≡ Q2
s(Y )/k2 ;

ii) it is marginally universal : it depends upon the
initial conditions only logarithmically, via Qs.

• What about k⊥ above but near Qs ?

ng(Y, k) ≈ C

ᾱs

(
Q2

s(Y )
k2

)γs

exp
{
−

ln2 (
k2/Q2

s(Y )
)

2βᾱsY

}

• If k > Qs, but ln
(
k2/Q2

s(Y )
)
2 ᾱsY , the diffusion

term can be neglected:

ng(Y, k) ≈ C

ᾱs

(
Q2

s(Y )
k2

)γs

=⇒ approximate scaling persists above Qs !

New anomalous dimension: γs ≈ 0.64

• A natural explanation for the “geometric scaling”
recently identified in the HERA data (see below).

[Staśto, Golec-Biernat, and Kwieciński, 2000]



A “phase-diagram” for high-energy QCD
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• Saturation line: Q2
s(Y ) + Q2

0 eλY

λ = 4.84(αsNc/π) + 1 at LO BFKL level

λ ≈ 0.3 for Y = 5 · · · 9 from NLO BFKL equation

(Triantafyllopoulos, 02)

• “Extended scaling” : Q2
s(Y ) < Q2 < Q4

s(Y )/Q2
0

Scaling window ≈ BFKL window

• Scaling violation by the “diffusion” term



V. DIS off the C G C

A. Unitarization of Dipole Scattering

P

r

b (x+y)/2b = 
r = x-y

 

y
x

• Recall: Dipole factorization

σγ∗p(x, Q2) =
∫ 1

0
dz

∫
d2r

∣∣Ψ(z, r; Q2)
∣∣2 σdipole(x, r)

σdipole(x, r) = 2
∫

d2b
(
1− S(x, r, b)

)
≡ 2

∫
d2bNY (r, b)

S(x, r, b)︸ ︷︷ ︸
S-matrix

=
1

Nc

〈
trV †(x) V (y)

〉

Y
≡ 1− NY (r, b)︸ ︷︷ ︸

scatt. amplitude

V †(x) ≡ P exp
{

ig

∫
dx−αa(x−, x)T a

}



• Weak field (low density) regime: V †(x) ≈ 1 + igα(x)

NY (r) ∼ αsr
2 xG(x, 1/r2)

πR2

=⇒ for x low enough and/or r large enough:

Violation of the unitarity bound NY (r) ≤ 1 !

• However, when r >∼ 1/Qs(Y ), the dipole is probing
strong fields (gα ∼ 1), for which :

〈V †(x)V (y)〉Y 2 1 for |x− y|) 1/Qs(Y )

1/Qs(Y ) : correlation length for the Wilson lines

• Dipole Unitarization: NY (r) ∼ 1 for r >∼ 1/Qs(Y )

Y Y

YY >

Y

2 1

12

1

1/2

1/Q 1/Q (1)ss(2) r

N

• For an inhomogeneous target, this holds at fixed
impact parameter:

NY (r, b) + 1 (“blackness”) for r >∼ 1/Qs(Y, b)



B. The Balitsky–Kovchegov equation

• An evolution equation for SY (x, y) :

∂

∂Y

〈
tr(V †

xVy)
〉

Y
= αs

∫

z

(x−y)2

(x−z)2(y−z)2
〈
−Nc tr(V †

xVy)
︸ ︷︷ ︸

2-point ftion

+ tr(V †
xVz) tr(V †

z Vy)
︸ ︷︷ ︸

4-point ftion

〉

Y

• Balitsky (96): First equation in an infinite hierarchy!

• A closed equation can be obtained assuming only
2-point correlations + Large Nc ) 1 :
〈
tr(V †

xVz) tr(V †
z Vy)

〉
Y
≈

〈
tr(V †

xVz)
〉

Y

〈
tr(V †

z Vy)
〉

Y

=⇒ Kovchegov’s equation (99):

∂

∂Y
SY (x, y) = ᾱs

∫

z

(x−y)2

(x−z)2(y−z)2
{
− SY (x, y) + SY (x, z)SY (z, y)

}

Strictly justified, e.g., for a large nucleus (A) 1).
Simple toy equation to study unitarization !

• Alternatively, an equation for NY = 1− SY :

∂

∂Y
NY (x, y) = ᾱs

∫

z

(x−y)2

(x−z)2(y−z)2
{
−NY (x, y) + NY (x, z) + NY (z, y)︸ ︷︷ ︸

BFKL

− NY (x, z)NY (z, y)︸ ︷︷ ︸
Non-linear

}
.



• Very complete numerical studies, which exhibit :

— unitarization (NY + 1) for r >∼ 1/Qs(Y )

— the energy dependence of Qs(Y )

[Armesto, Braun, 01; Golec-Biernat, Motyka, Stasto, 01]

— suppression of infrared diffusion

[Golec-Biernat, Motyka, Stasto, 01]

— geometric scaling at saturation (r >∼ 1/Qs)

— geometric scaling below saturation (r < 1/Qs),
down to rather small values of rQs(Y ).

[Levin, Tuchin, 01; Golec-Biernat, Motyka, Stasto, 01;

Lublinsky, 02]

— impact parameter dependence and violation of
Froissart bound [Golec-Biernat, Stasto, 03]

— applications to the phenomenology of DIS at
HERA [Gotsman, Levin, Lublinsky, Maor (02)]

and of heavy ion collisions at RHIC (“Cronin effect”)
[Albacete, Armesto, Kovner, Salgado, Wiedemann, 03]

• All these features have been confirmed and further
studied by Rummukainen, Weigert (03), via a
direct resolution of the functional RGE on a lattice.



• Approximate analytic solutions:
Physical content is even more manifest !
Kovchegov, 99; Levin, Tuchin, 00–01; E.I., McLerran, 2001;

E.I., Itakura, McLerran, 2002; Mueller, Triantafyllopoulos, 02;

E.I., Mueller 03; Munier, Peschanski, 03

• Small dipole (r 2 1/Qs(Y )) =⇒ BFKL eq.

NY (r) ≈
(
r2Q2

0

)1/2 eωᾱsY exp
{
−

ln2 (
1/r2Q2

0

)

2βᾱsY

}

• Saturation condition:
NY (r) ∼ N0 when r ∼ 1/Qs(Y ) (say, N0 = 0.5)

Q2
s(Y ) + Q2

0 eλY with λ + 4.8ᾱs

• Replace Q0 by Qs(Y ) as the reference scale:

NY (r) ≈ N0

(
r2Q2

0

)γs exp
{
−

ln2 (
1/r2Q2

s(Y )
)

2βᾱsY

}

• For r near 1/Qs(Y ) =⇒ Geometric scaling :

NY (r) ≈ N0

(
r2Q2

0

)γs with γs + 0.63

• Large dipole: r ) 1/Qs(Y ) =⇒ Simple eq. for SY (r)

NY (r) ≈ 1 − κ exp
{
− 1

4c
ln2 (

r2Q2
s(Y )

)}

with c + 4.8 [Levin, Tuchin, 00; E.I., Mueller 03]
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Figure 1: The functions kφ(k, Y ) constructed from solu-
tions to the BFKL and the Balitsky-Kovchegov equations
for different values of the evolution parameter Y = ln(1/x)
ranging from 1 to 10. The coupling constant αs = 0.2.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65

(2002) 074037; hep-ph/0110325
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Figure 2: The function (k/Qs(Y ))φ(k, Y ) plotted versus
k/Qs(Y ) for different values of rapidity Y ranging from
10 to 23. The saturation scale Qs(Y ) corresponds to the
position of the maximum of the function k φ(k, Y ).

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65

(2002) 074037; hep-ph/0110325



C. Saturation & Geometric Scaling at HERA

1. The Golec-Biernat–Wüsthoff model (1999)

σdipole(x, r) = σ0

(
1− exp

{
− r2Q2

s(x)
4

})

Q2
s(x) = 1GeV2 (x0/x)λ

• “Saturation” : unitarization (σdipole(x, r⊥) + σ0)
over a energy dependent scale 1/Qs(x)

• High Q2 ) Q2
s(x) :

F2(x, Q2) ∼ σ0 Q2
s(x) ln

(
Q2/Q2

s(x)
)
∝ x−λ

Qs(x) acts effectively as an infrared cutoff

• Low Q2 2 Q2
s(x) :

F2(x, Q2) ∼ σ0 Q2 ln
(
Q2

s(x)/Q2
)
∝ ln(1/x)

• Remarkably good fit to the (old) small–x data at
HERA (F2, FD

2 ) at x < 0.01 with only 3 parameters
σ0 = 23 mb, x0 = 3× 10−4, λ + 0.3

• ‘Hard’ saturation scale: Qs ≥ 1 GeV for x ≤ 10−4

• Good description of the ‘hard–to–soft’ transition in
F2 with lowering Q2

• No QCD evolution at small r⊥ :
σdipole(x, r) ∝ r2Q2

s(x) instead of r2xG(x, 1/r2)

• No impact parameter dependence
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Figure 3: F2(x, Q2) as a function of Q2 for fixed y =
Q2/(sx). The solid lines: the model with DGLAP evolu-
tion by BGBK and the dashed lines: the saturation model
by GBW. The curves are plotted for x < 0.01. Full circles:
ZEUS data and open circles: H1 data.
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the results of the DGLAP improved model with massless
quarks (BGBK).



2. Geometric Scaling at HERA

• GBW model: σdipole(x, r) ≡ σ
(
r2Q2

s(x)
)
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t
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• Staśto, Golec-Biernat, and Kwieciński, 2000 :
For x < 10−2 and Q2 <∼ 400GeV2, data show
(approximate) scaling:

σγ∗p(x, Q2) ≈ σ(τ) , with τ ≡ Q2

Q2
s(x)



3. A CGC fit to the HERA data

• Improving the GBW model:

— DGLAP improvement by Bartels, Golec-Biernat,
Kowalski (02)

σdipole(x, r) = σ0

(
1− exp

{
− αsr

2xG(x, 1/r2)
})

(Glauber-like exponentiation)

— Adding the b–depedence: Kowalski, Teaney (03)

xG(x, 1/r2)T (b) with T (B) =
1

2πR2
exp

(
− b2/2R

)

— Adding BK dynamics by Gotsman, Levin,
Lublinsky, Maor (03)

Numerical matching of BK and DGLAP

=⇒ Rather good global fits !

• Can we directly probe the BFKL dynamics towards
saturation ?

— Anomalous dimension < 1

— Geometric scaling near Qs

— Scaling violations by the diffusion term

— Saturation exponent λ + 0.3

• Focus on smallish Q2 : up to 50 GeV2

• Use analytic results for the dipole amplitude



• The CGC fit (E.I., Itakura, Munier, 03)

σdipole(x, r) = 2πR2N (rQs, Y )

N (rQs, Y ) = N0

(
r2Q2

s

4

)γ+ ln(2/rQs)
κλY

for rQs ≤ 2,

N (rQs, Y ) = 1− e−a ln2(b rQs) for rQs > 2,

Qs ≡ Qs(x) = (x0/x)λ/2 GeV

γ = 0.63, κ = 9.9 (fixed by BFKL)

a, b : fixed by continuity at rQs = 2

=⇒ The same 3 parameters as in the GBW model:

R, x0 and λ

• BFKL anomalous dimension at saturation : γ = 0.63

• Effective anomalous dimension :

γeff(rQs, Y ) ≡ − d lnN (rQs, Y )
d ln(4/r2Q2

s)
= γs + 2

ln(2/rQs)
κλY

=⇒ Scaling violation !

• Fit to the ZEUS data for F2(x, Q2) within the range:

x ≤ 10−2 and 0.045 ≤ Q2 ≤ 45 GeV2

(156 data points)
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Figure 5: The dipole amplitude for two values of x, com-
pared to the pure scaling functions with “anomalous di-
mension” γ = γs = 0.63 and γ = 0.84.

γeff(rQs, Y ) ≡ − d lnN (rQs, Y )
d ln(4/r2Q2

s)
= γs + 2

ln(2/rQs)
κλY



Figure 6: The F2 structure function in bins of Q2 for small
(upper part) and moderate (lower part) values of Q2. The
full line shows the result of the CGC fit with N0 = 0.7 to
the ZEUS data for x ≤ 10−2 and Q2 ≤ 45 GeV2. The
dashed line shows the predictions of the pure BFKL part
of the fit (no saturation).



Figure 7: The same as before, but for large Q2. Note that
in the bins with Q2 ≥ 60 GeV2, the CGC fit is extrap-
olated outside the range of the fit (Q2 < 50 GeV2 and
x ≤ 10−2), to better emphasize its limitations.



N0/model 0.5 0.6 0.7 0.8 0.9 GBW
χ2 146.43 129.88 123.63 125.61 133.73 243.87
χ2/d.o.f 0.96 0.85 0.81 0.82 0.87 1.59
x0 (×10−4) 0.669 0.435 0.267 0.171 0.108 4.45
λ 0.252 0.254 0.253 0.252 0.250 0.286
R (fm) 0.692 0.660 0.641 0.627 0.618 0.585

Table 1: The CGC fits for different values of N0 and 3 quark
flavors with mass mq = 140 MeV. Also shown is the fit ob-
tained by using the GBW model.

mq = 50 MeV mq = 10 MeV
N0 0.5 0.7 0.9 0.5 0.7 0.9
χ2 148.02 108.52 108.76 149.27 107.64 106.49
χ2/d.o.f 0.97 0.71 0.71 0.98 0.70 0.70
x0 (×10−4) 2.77 0.898 0.333 3.32 1.06 0.382
λ 0.290 0.281 0.274 0.295 0.285 0.276
R (fm) 0.604 0.574 0.561 0.593 0.566 0.554

Table 2: The CGC fits for three values of N0 and quark
masses mq = 50 MeV (left) and mq = 10 MeV (right).

1) 0.25 < λ < 0.29 is in agreement with the
NLO BFKL calculation by Triantafyllopoulos (02)

2) Scaling violation is essential to describe the data.

3) Remarkable agreement even at Q2 2 1 GeV2

(quark–hadron duality)



VI. Saturation Physics at RHIC

Geometric Scaling and High-p⊥ Suppression

Kharzeev, Levin, McLerran (02)

x2 , p kt t

A x1 , kt
2( )

A( x2 , (p t kt ) )

A

2

A

x1 , k t

y, p t

g g

s

dN

dyd2p⊥
=

αs

πR2
A

1
p2
⊥

∫
dk2

⊥ αs ϕA(x1, k
2
⊥) ϕA(x2, (p− k)2⊥)

• ϕA(x, k2
⊥) = the unintegrated gluon distribution

• x1,2 = (p⊥/
√

s) exp(±η)

• η = the (pseudo)rapidity of the produced gluon

• πR2
A ∝ N2/3

part = the nuclear overlap area

• Q2
s(x, A) ∝ N1/3

part = the saturation momentum
for the considered centrality



• High p⊥ ) Q2
s(x)/Λ : ϕA(x, k2

⊥) ≈ πR2
A

αs

Q2
s

k2
⊥

dN

dyd2p⊥
∼ πR2

A

αs p2
⊥

∫ p2
⊥

dk2
⊥

Q2
s

k2
⊥

Q2
s

p2
⊥
∼ πR2

AQ4
s

αs p4
⊥
∼ Ncoll

• Qs(x) < p⊥ < Q2
s(x)/Λ : ϕA(x, k2

⊥) ≈ πR2
A

αs
(Q2

s/k2
⊥)1/2

πR2
A

αsp2
⊥

∫ p2
⊥

dk2
⊥

(
Q2

s

k2
⊥

)1/2 (
Q2

s

p2
⊥

)1/2

∼ πR2
AQ2

s

αsp2
⊥
∼ Npart

• Low p⊥ < Qs(x) : ϕA(x, k2
⊥) ≈ πR2

A
αs

dN

dyd2p⊥
∼ πR2

A

αs p2
⊥

∫ Q2
s

dk2
⊥ ∼ πR2

AQ2
s

αs p2
⊥
∼ Npart

• “Nuclear modification factor”:

The ratio of the AA to the p + p hadron yields scaled by
nuclear geometry (TAB) :

RAA(pT ) =
d2Nπ0

AA/dydpT

〈TAB〉 × d2σπ0
pp /dydpT

RAA(pT ) measures the deviation of AA from an
incoherent superposition of NN collisions in terms of
suppression (RAA <1) or enhancement (RAA >1).

The RHIC data for Au–Au collision at s = 130 GeV2

and s = 200 GeV2 show a significant suppression (by a
factor of 4 to 5), and are consistent within the error bars
with Npart–scaling !
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Figure 8: Invariant π0 yields measured by PHENIX in pe-
ripheral (left) and in central (right) Au+Au collisions (stars),
compared to the Ncoll scaled p+p π0 yields (circles) and to a
NLO pQCD calculation (gray line). The yellow band around
the scaled p+p points includes in quadrature the absolute
normalization errors in the p+p and Au+Au spectra as well
as the uncertainties in TAB . From the recent review by D.
d’Enterria nucl ex/0309015
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Figure 9: Nuclear modification factor, RAA(pT ), in periph-
eral and central Au+Au reactions for charged hadrons (left)
and π0 (right) measured at

√
sNN = 200 GeV by STAR and

PHENIX respectively. A comparison to theoretical curves:
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Figure 10: Left: RAA(pT ) measured by BRAHMS at η = 0
and η = 2.2 for 0–10% most central and for semi-peripheral
(40-60%) Au+Au collisions. Right: Ratio Rη of Rcp distri-
butions at η = 2.2 and η = 0. From D. d’Enterria, nucl-
ex/0309015


