IV. The Colour Glass Condensate

A. Effective theory for the small– x gluons

• The small–x gluons \approx Classical color fields radiated by the fast partons with $x' > x$

$$
\left(D_{\nu}F^{\nu\mu}\right)_{a}(x) = J^{\mu}_{a}(x)
$$

 $J_a^{\mu}(x)$ = the color current due to the fast partons. $D_{\nu} = \partial_{\nu} - igA_{\nu}^a T^a$, $D_{\nu}^{ab} = \partial_{\nu}\delta^{ab} - gf^{abc}A_{\nu}^c$

• The structure of the color current The fast partons move nearly at the speed of light in the positive z (or x^+) direction. $\implies J_a^{\mu}$ has only a 'plus' component: $J_a^{\mu} = \delta^{\mu +} \rho_a$ \Rightarrow ρ_a is localized near the light-cone: $\rho_a \propto \delta(x^-)$

 $\implies \rho_a$ is independent of LC time x^+

$$
J_a^{\mu}(x) \approx \delta^{\mu +} \delta(x^-) \rho_a(x)
$$

- The color charge density $\rho_a(\boldsymbol{x})$: a random variable with correlations $\langle \rho \cdots \rho \rangle_x$ determined by the dynamics at the larger scales $x' > x$
	- \Rightarrow Weight function(al) $W_x[\rho]$ (gauge–invariant)

 $\left\langle F_a^{+i}(x^+,\vec{x})F_a^{+i}(x^+,\vec{y})\right\rangle _x=$ \mathcal{L} $D[\rho] W_x[\rho] \mathcal{F}_a^{+i}(\vec{x}) \mathcal{F}_a^{+i}(\vec{y})$ $\mathcal{F}_a^{+i} = \partial^+ \mathcal{A}_a^i[\rho]$: the classical solution in LC gauge.

- With decreasing x , new modes become relatively fast, and must be included in the classical source ρ \Rightarrow Evolution of the weight function $W_x[\rho]$ with x
- Quantum evolution is computed in perturb. theory, by integrating out the fast gluons in layers of x : — leading–log $1/x$ for the newly radiated gluons — to all orders in the classical field $\mathcal{A}[\rho]$ generated by the color source constructed in previous steps \Rightarrow Functional evolution equation for $W_x[\rho]$:

$$
\frac{\partial W_Y[\rho]}{\partial Y} = -\alpha_s H\Big[\rho, \frac{\partial}{\partial \rho}\Big] W_Y[\rho]
$$

- Classical theory (a stochastic Yang–Mills theory) $+$ Quantum evolution \implies An effective theory
- Main difference w.r.t. BFKL: non-linear effects $\mathcal{A} \sim 1/g$: non–linear effects must be treated exactly !
	- \longrightarrow exact solution $\mathcal{A}[\rho]$ to the classical EOM;
	- −→ exact background field quantum calculation.

Why "C G C"

- "Color" : Obvious !
- "Glass": Separation in time scales between the small– x gluons and their fast sources Fast partons $(x' \gg x)$ are frozen over the natural time scale for dynamics at x , namely:

$$
\tau(x) \sim \frac{2k^+}{k^2} \sim \frac{2P^+}{k^2}x
$$

One can therefore solve the dynamics of the small– x gluons at fixed distribution of the fast partons, and only then average over the latter.

A similar situation: "spin glass"

Collection of magnetic impurities ("spins") randomly distributed on a non–magnetic lattice.

 $spins \longleftrightarrow small-x$ gluons

spin positions \longleftrightarrow color charge ρ

• "Condensate" : Coherent state with high quantum occupancy ($\sim 1/\alpha_s$ at saturation)

$$
\frac{\mathrm{d}N}{\mathrm{d}Y\mathrm{d}^2\mathbf{k}\,\mathrm{d}^2\mathbf{b}} \sim \frac{1}{\alpha_s} \quad \text{for} \quad \mathbf{k}^2 \lesssim Q_s^2(Y)
$$

B. The classical solution $\mathcal{A}[\rho]$

- What is the color field of a fast moving gluon ?
- Recall the corresponding problem in QED: The Weiszäcker–Williams field of a fast $(v \simeq c)$ charged particle.
- Start in the particle rest frame: a static electric field, radially oriented (spherical symmetry).
- Make a boost with velocity v along z :

- Fields localized at $z = t$, or $x^- \equiv \frac{t-z}{\sqrt{2}} = 0$, and independent of $x^+ \equiv (t+z)/\sqrt{2}$ (plane wave)
- LC variables: the only non-zero field strength is $F^{+i} = \sqrt{2} E^i = \sqrt{2} \epsilon^{ij} B^j$
- Maxwell eqs: $\partial_{\nu}F^{\mu\nu} = \delta^{\mu+} \rho$ with $\rho = \delta(x^-)\rho(x)$

$$
F^{+i} = \partial^i \frac{1}{\nabla^2_{\perp}} \rho \equiv -\partial^i \alpha, \quad \text{with } -\nabla^2_{\perp} \alpha = \rho
$$

 $\alpha \equiv A^+$ in the COV–gauge $\partial^{\mu} A_{\mu} = 0$

• The non-Abelian problem: $D_{\nu}F^{\nu\mu} = \delta^{\mu +} \rho(\vec{x})$ The COV–gauge solution is simple again !

$$
\mathcal{A}_a^{\mu}(\vec{x}) = \delta^{\mu +} \alpha_a(\vec{x}) \text{ with } -\nabla^2_{\perp} \alpha_a = \rho_a
$$

• Explicitly

$$
\alpha_a(x^-, \mathbf{x}) = \int \frac{\mathrm{d}^2 \mathbf{y}}{4\pi} \ln \frac{1}{(\mathbf{x} - \mathbf{y})^2 \Lambda^2} \rho_a(x^-, \mathbf{y})
$$

 \Rightarrow IR cutoff Λ^2 for the transverse dynamics \implies locality in x^-

- But gauge–invariant observables remain non–linear, as they involve Wilson lines built with $A^+ = \alpha$!
- Obvious for dipole scattering :

$$
S \Longrightarrow V^{\dagger}(\boldsymbol{x}) \equiv \text{P} \, \exp \left\{ ig \int \mathrm{d}x^- \alpha_a(x^-,\boldsymbol{x}) t^a \right\}
$$

Exercice The gluon distribution involve the gauge-invariant operator \mathcal{O}_{γ} . Show that, when evaluated in the COV–gauge, this operator reads:

$$
\mathcal{O}_{\gamma}(\vec{x}, \vec{y})\Big|_{\text{COV}} = \text{Tr}\left\{\underbrace{V(\vec{x})\mathcal{F}^{i+}(\vec{x})V^{\dagger}(\vec{x})}_{\mathcal{F}^{i+}(\vec{x})|_{\text{LC}}}V(\vec{y})\mathcal{F}^{i+}(\vec{y})\,V^{\dagger}(\vec{y})\right\}
$$

$$
\mathcal{F}^{i+} = \partial^i \alpha, \quad V^{\dagger}(x^-, \boldsymbol{x}) \equiv \text{P} \exp \left\{ ig \int_{-\infty}^{x^-} \mathrm{d}z^- \alpha_a(z^-, \boldsymbol{x}) T^a \right\}
$$

NB: The longitudinal (x^-) structure of ρ (or α) does matter : P e^{ig f} dx⁻ α_a(x⁻)T^a \neq e^{ig} α_aT^a \implies one cannot simply use $\alpha(x^-,\mathbf{x}) = \delta(x^-)\alpha(\mathbf{x})$ Rather: ρ (and α) is quasi-localized near $x^{-} = 0$ within a distance $\Delta x^-\sim 1/k^+ = 1/xP^+$

Smaller is x, more is the hadron (CGC) extended in $x[−]$

External probe: localized in x^+ ($\Delta x^+ \sim 1/q^-$) but extended in x^- : { $A^+(x^+ \simeq 0, x^-)$, $-\infty < x^- < \infty$ }

C. The gluon distribution of the valence quarks (McLerran–Venugopalan model, 94)

• The valence quarks: the only fast partons

— x not too small (say $x > 0.01$), so one can neglect quantum evolution;

— a model for the initial condition for the evolution towards smaller values of x.

• Large nucleus $(A \gg 1)$ [like at RHIC] :

 \Rightarrow Many color sources $(N_c \times A)$!

 \Rightarrow A strong field even without quantum evolution !

- How to formulate this as a Color Glass?
- A small $(1/Q \ll R_p =)$ dipole "sees" valence quarks from different nucleons \implies uncorrelated

 $\langle \rho_a(\bm{x}) \rho_b(\bm{y}) \rangle_A = \delta_{ab} \delta(\bm{x} - \bm{y}) \mu_A(\bm{x})$

 $\mu_A(\mathbf{x}) =$ color charge squared per unit transverse area.

• Large nucleus \approx homogeneous \Longrightarrow no x dependence

$$
\langle Q^2 \rangle_A = (gt^a)(gt^a)N_cA = g^2C_FN_cA
$$

$$
\langle Q^2 \rangle_A = \int d^2x \int d^2y \langle \rho_a(x)\rho_a(y) \rangle_A = (N_c^2 - 1)\pi R_A^2 \mu_A
$$

$$
\implies \mu_A = \frac{g^2A}{2\pi R_A^2} = \frac{2\alpha_sA}{R_A^2} \sim \alpha_s A^{1/3}
$$

- Weight function $W_A[\rho]$: a Gaussian with width μ_A
- Gluon distribution in the weak field limit

$$
f_A(\boldsymbol{k}^2)\,=\,\pi\boldsymbol{k}^2\,\frac{\mathrm{d}N}{\mathrm{d}Y\mathrm{d}^2\boldsymbol{k}}\,=\,\frac{\boldsymbol{k}^2}{(2\pi)^2}\,\big\langle\big|\mathcal{F}_a^{+i}(\boldsymbol{k})\big|^2\big\rangle_A
$$

Weak fields \Longrightarrow Linearized EOM \Longrightarrow $\mathcal{F}^{+i} \approx i(k^{i}/k^{2})\rho$

$$
f_A(\mathbf{k}^2) \approx \frac{1}{(2\pi)^2} \langle \rho_a(\mathbf{k}) \rho_a(-\mathbf{k}) \rangle_A
$$

$$
f_A(\mathbf{k}^2) \approx AN_c(\alpha_s C_F/\pi) \equiv AN_c f_q(\mathbf{k}^2)
$$

The integrated gluon distribution (weak field)

$$
xG_A(x,Q^2) \approx (N_c^2 - 1)\pi R_A^2 \int_{-\pi}^{Q^2} \frac{\mathrm{d}k^2}{(2\pi)^2} \frac{\mu_A}{k^2}
$$

$$
\approx AN_c \frac{\alpha_s C_F}{\pi} \ln \frac{Q^2}{\Lambda^2}
$$

 \implies Infrared divergence !

Why ? No x_{\perp} –correlations among the color sources !

• One expects quantum evolution towards small x to introduce correlations and energy dependence :

$$
\mu_A \longrightarrow \mu_A(Y, \mathbf{k})
$$

D. The Renormalization Group at Small– x

- ρ and its correlators change with decreasing x.
- Because of non–linear effects, the evolution couples *n*–point functions $\langle \rho(1)\rho(2)\cdots\rho(n)\rangle_x$ with different *n*.
- It is most conveniently formulated as a functional evolution equation for the weight function $W_x[\rho]$
- Strategy: Integrate out quantum fluctuations in layers of k^+ (or of x, or of rapidity $Y = \ln(1/x)$). i) Start with the effective theory at scale $\Lambda^+ = xP^+$. The fast partons with $k^+ > \Lambda^+$ have been already integrated out.

ii) Compute correlation functions at a new scale $b\Lambda^+$ with $b \ll 1$ but such that $\alpha_s \ln(1/b) < 1$.

These include:

— classical correlations associated with ρ and described by $W_x[\rho]$

— quantum correlations associated with the 'semi–fast' partons with $b\Lambda^{+} < k^{+} < \Lambda^{+}$.

Quantum corrections are computed to $O(\alpha_s \ln(1/b))$ but to all orders in the classical field $\mathcal{A}[\rho]$

iii) Reinterpret the quantum corrections as classical correlations associated with a (functional) change in the weight function: $W_x[\rho] \to W_{x'}[\rho] = W_x + dW_x$ (with $x' = bx \ll x$). This fixes $dW_x[\rho]$.

• One-loop calculation with the Background–Field Propagator:

• Since $dW_x \propto \alpha_s \ln(x/x') \equiv \alpha_s dY$, this evolution is rewritten as a differential equation in \boldsymbol{Y} :

$$
\frac{\partial W_Y[\rho]}{\partial Y} = \frac{1}{2} \int_{\boldsymbol{x}, \boldsymbol{y}} \frac{\delta}{\delta \rho_Y^a(\boldsymbol{x})} \chi_{\boldsymbol{x}\boldsymbol{y}}^{ab}[\rho] \frac{\delta}{\delta \rho_Y^b(\boldsymbol{y})} W_Y[\rho]
$$

Renormalization Group Equation at small– x . Also known as "JIMWLK equation" (cf. A. Mueller) Jalilian-Marian, Kovner, Leonidov, Weigert, 97; Weigert, 2000; Iancu, Leonidov, McLerran, 2000

• A second–order functional differential equation.

• At each step $Y \to Y + dY$ in the evolution, only the 1-point and 2-point correlations of ρ need be adjusted: $\chi^{ab}(\bm{x},\bm{y})[\rho] \, = \langle \delta \rho_Y^a(\bm{x}) \delta \rho_Y^b(\bm{y}) \rangle_\rho, \quad \sigma^a(\bm{x})[\rho] \, = \langle \delta \rho_Y^a(\bm{x}) \rangle_\rho$ • χ , σ : generalizations of the real and virtual parts of the BFKL kernel including background field effects : $x = \left\{ \cos \theta \cos \theta : \theta = \cos \theta \right\} = \frac{\delta}{\delta}$ $\begin{array}{ccc} \rho & \hspace{1.5cm} &$ $\delta \rho$ $\overline{\chi}$ $=$ $\sqrt{ }$ $=$ $\sigma^a(\bm{x}) = \frac{1}{2}$ % $\mathrm{d}^2\pmb{y}$ $\delta \chi^{ab}(\bm{x},\bm{y})$

$$
\sigma(\omega) = 2 \int d^2 \theta \, d\rho_Y^b(y)
$$

Functional relation $\sigma \longleftrightarrow \chi$ ensures the cancellation
of infrared divergences in gauge–invariant quantities.

• Change of variables : $\rho_a \longrightarrow \alpha_a$ with $-\nabla^2_{\perp} \alpha_a = \rho_a$

$$
\frac{\partial W_Y[\alpha]}{\partial Y} = \frac{1}{2} \int_{\boldsymbol{x}, \boldsymbol{y}} \frac{\delta}{\delta \alpha_Y^a(\boldsymbol{x})} \ \chi_{\boldsymbol{x} \boldsymbol{y}}^{ab}[\alpha] \ \frac{\delta}{\delta \alpha_Y^b(\boldsymbol{y})} \ W_Y[\alpha]
$$

• χ depends upon α via Wilson lines:

$$
\chi_{xy}^{ab}[\alpha] \equiv \int \frac{\mathrm{d}^2 z}{\pi} \mathcal{K}_{xyz} \left[(1 - V_x^{\dagger} V_z)(1 - V_z^{\dagger} V_y) \right]^{ab}
$$

$$
\mathcal{K}_{xyz} \equiv \frac{1}{(2\pi)^2} \frac{(x - z) \cdot (y - z)}{(x - z)^2 (z - y)^2}
$$

The coupling g enters only via the Wilson lines !

E. General consequences of the RGE

1. Longitudinal (x^-) structure of α (or ρ)

• RGE: non–local in x_\perp and in x^-

$$
V^{\dagger}(\boldsymbol{x}) \equiv \text{P} \, \exp \left\{ ig \int \mathrm{d}x^- \alpha_a(x^-, \boldsymbol{x}) T^a \right\}
$$

- With decreasing x, the classical field extends in x^- Lower $k^+ = xP^+$ \iff Increase $\Delta x^- \sim 1/k^+$
- For the theory at scale Λ^+ , the support of the field is retricted to: $x^- < 1/\Lambda^+$

 $\Lambda^+ \to b \Lambda^+ \Longrightarrow \delta \alpha_\Lambda$ with support at $1/\Lambda^+ < x^- < 1/b \Lambda^+$

The new field $\delta \alpha_{\Lambda}$ has no overlap with the previous one.

• The CGC is built in layers of x^- .

Wilson lines evolve by left (or right) multiplication:

$$
V_{Y+\mathrm{d}Y}^{\dagger} = e^{ig \delta \alpha_Y^a T^a} V_Y^{\dagger}
$$

$$
\frac{\delta}{\delta \alpha_Y^a(\boldsymbol{x})} V_Y^{\dagger}(\boldsymbol{y}) = igT^a V_Y^{\dagger}(\boldsymbol{x}) \delta(\boldsymbol{x} - \boldsymbol{y})
$$

2. Quantum Evolution as a Random Walk

• Since $\delta \alpha_Y \equiv \alpha_Y dY$ is a random quantity, the evolution defines a random walk on SU(3) :

$$
Y = n\epsilon, \qquad V_n^{\dagger}(\boldsymbol{x}) = e^{i\epsilon \alpha_n^a(\boldsymbol{x})T^a} V_{n-1}^{\dagger}(\boldsymbol{x})
$$

$$
\langle \alpha_n^a(\bm x)\rangle\,=\,\sigma_{n-1}^a(\bm x),\quad \langle \alpha_n^a(\bm x)\alpha_n^b(\bm y)\rangle\,=\,\frac{1}{\epsilon}\,\chi_{n-1}^{ab}(\bm x,\bm y)
$$

 σ_{n-1} and χ_{n-1} : functionals of V_{n-1}

- RGE: A functional Fokker–Planck equation with "time" Y and "diffusion coefficient" $\chi[\rho] \geq 0$. Blaizot, E.I., Weigert, 2002
- Recent numerical solution (lattice) Rummukainen, Weigert, sept. 2003
- Recall: Brownian motion

Small particle in a viscous liquid \implies Random velocity:

$$
dx^{\alpha}/dt = v^{\alpha}(t), \qquad \langle v^{\alpha}(t)v^{\beta}(t') \rangle = v \,\delta^{\alpha\beta}\delta(t - t')
$$

with $\alpha, \beta = \overline{1,3}$. With discretized time: $t = n\epsilon$

$$
x_n^{\alpha} - x_{n-1}^{\alpha} = \epsilon v_n^{\alpha}, \qquad \langle v_n^{\alpha} v_r^{\beta} \rangle = (1/\epsilon) \nu \delta^{\alpha \beta} \delta_{nr}
$$

• $P(x, t)$: probability to find the particle at point x at time t . This obeys the diffusion (or FP) equation:

$$
\frac{\partial P(\boldsymbol{x},t)}{\partial t} = D \frac{\partial^2 P(\boldsymbol{x},t)}{\partial x^{\alpha} \partial x^{\alpha}}, \qquad D \equiv \nu^2
$$

• $\langle (\boldsymbol{x} - \boldsymbol{x}_0)^2 \rangle (t) = 6Dt$: "runaway solution"

3. Evolution equations for correlations

• A functional, non–linear, equation for $W_Y[\alpha]$ ⇐⇒ An infinite hierarchy of ordinary equations for the *n*–point functions $\langle \alpha(1)\alpha(2)\cdots\alpha(n)\rangle_Y$

• $O[\alpha]$: any observable or correlation functions :

$$
\langle O[\alpha] \,\rangle_Y \,=\, \int \, D[\alpha] \, O[\alpha] \, W_Y[\alpha]
$$

Take a derivative w.r.t. Y and use the RGE:

$$
\frac{\partial}{\partial Y} \langle O[\alpha] \rangle_Y = \int D[\alpha] O[\alpha] \frac{\partial W_Y[\alpha]}{\partial Y}
$$

= $\left\langle \frac{1}{2} \int_{\bm{x} \bm{y}} \frac{\delta}{\delta \alpha_Y^a(\bm{x})} \chi_{\bm{x} \bm{y}}^{ab} \frac{\delta}{\delta \alpha_Y^b(\bm{y})} O[\alpha] \right\rangle_Y$

• Example:
$$
O[\alpha] = \langle \alpha(\boldsymbol{x}) \alpha(\boldsymbol{y}) \rangle_Y
$$

 ∂ $\frac{\partial}{\partial Y} \langle \alpha(\bm{x}) \alpha(\bm{y}) \rangle_Y = \langle \chi(\bm{x},\bm{y}) \rangle_Y + \langle \sigma(\bm{x}) \alpha(\bm{y}) \rangle_Y + \langle \alpha(\bm{x}) \sigma(\bm{y}) \rangle_Y$

Via the Wilson lines within χ and σ , the r.h.s. involves all the *n*–point functions with $n \geq 2$!

• Weak field (low density) regime: $q\alpha \ll 1$ $V^{\dagger}(\boldsymbol{x}) \approx 1 + ig \int dx^{-} \alpha(x^{-}, \boldsymbol{x}) \equiv 1 + ig \alpha(\boldsymbol{x})$ $1 - V_x^{\dagger} V_z \approx -ig(\alpha(\boldsymbol{x}) - \alpha(z))$ $\Rightarrow \chi$ is quadratic in α , and σ is linear: $\chi \sim g^2 \alpha^2$, $\sigma \sim g^2 \alpha$

=⇒ Closed equation for the 2-point function: BFKL

• Strong field (high density) regime: $g\alpha \sim 1$ This is relevant for correlations over large transverse separations, or soft momenta:

$$
|\boldsymbol{x}-\boldsymbol{y}| \gtrsim 1/Q_s(Y)
$$
 or $\boldsymbol{k}^2 \lesssim Q_s^2(Y)$

 $g\alpha(\boldsymbol{x}) \sim 1$ and strongly varying over a (relatively short) distance $\Delta x_{\perp} \sim 1/Q_s(Y)$

 \Rightarrow Wilson lines V, V^{\dagger} : complex exponentials which oscillate around zero over a distance $\sim 1/Q_s(Y)$

• When probed over distances large compared to $1/Q_s$, the Wilson lines average to zero: $V, V^{\dagger} \approx 0$

$$
\langle V^{\dagger}(\boldsymbol{x}) V(\boldsymbol{y}) \rangle_Y \ll 1 \text{ for } |\boldsymbol{x} - \boldsymbol{y}| \gg 1/Q_s(Y)
$$

Exercise! Show than, when
$$
V, V^{\dagger} \approx 0
$$
:

$$
\chi^{ab}(\boldsymbol{x}, \boldsymbol{y}) \approx \delta^{ab} \frac{1}{\pi} \langle \boldsymbol{x} | \frac{1}{-\nabla_{\perp}^2} | \boldsymbol{y} \rangle, \quad \chi^{ab}(\boldsymbol{k}) \approx \delta^{ab} \frac{1}{\pi \boldsymbol{k}^2}
$$

- The RGE reduces to free Brownian motion (no g!) =⇒ Duality at Saturation [E.I., McLerran 01]
- In particular, the evolution of the 2-point function reduces to :

$$
\frac{\partial}{\partial Y}\langle \alpha(\boldsymbol{k})\alpha(-\boldsymbol{k})\rangle_Y\,\approx\,\frac{1}{\pi\boldsymbol{k}^2}
$$

F. Non–Linear Gluon Evolution: Saturation & Geometric Scaling

- Focus on the charge–charge correlator $\langle \rho(\bm{x}) \rho(\bm{y}) \rangle_Y$: i) Interesting information about the spatial distribution of the color charges.
	- ii) Access to the gluon distribution:

$$
f(Y,\bm{k}^2) \propto \langle \rho_a(\bm{k}) \rho_a(-\bm{k}) \rangle_Y
$$

• Initial condition: $x \approx 10^{-1} \cdots 10^{-2} \Longrightarrow MV$ model

 $\langle \rho_a(\mathbf{k}) \rho_a(-\mathbf{k}) \rangle_Y = \mu_0$ (no correlation)

• Weak fields $(k^2 \gg Q_s^2(Y)) \Longrightarrow$ BFKL

$$
\langle \rho_a(\bm{k}) \rho_a(-\bm{k}) \rangle_Y \,\approx\,\sqrt{\mu_0\,\bm{k}^2}\,{\rm e}^{\omega\alpha_s Y}
$$

• Strong fields $(k^2 \ll Q_s^2(Y)) \Longrightarrow$ Free diffusion

$$
\langle \rho_a(\mathbf{k}) \rho_a(-\mathbf{k}) \rangle_Y \; \approx \; (\mathbf{k}^2/\pi) \left(Y - Y_s(\mathbf{k}) \right)
$$

• $Y - Y_s(k) =$ rapidity excursion in the saturation regime for a given k :

$$
Q_s^2(Y) = \mathbf{k}^2 \quad \text{for} \quad Y = Y_s(\mathbf{k})
$$

 $Q_s^2(Y) = Q_0^2 e^{c\alpha_s Y} \implies Y - Y_s(\mathbf{k}) = \frac{1}{c\alpha_s}$ $\ln \frac{Q_s^2(Y)}{12}$ \bm{k}^2

1. Color Neutrality at Saturation

$$
\langle \rho(\bm{k}) \rho(-\bm{k}) \rangle_Y \ \propto \ \bm{k}^2 \quad \text{for} \quad \bm{k}^2 < Q_s^2(Y)
$$

=⇒ Improved infrared behaviour

The behaviour expected from gauge symmetry ! Recall: In QED, the charge–charge correlator $\Pi_{00}(k) = \langle \rho \rho \rangle$ vanishes like k^2 as $k \to 0$.

• Physical interpretation:

Color neutrality over a typical size $1/Q_s(\tau)$

$$
Q^a|_{\Delta\Sigma} \equiv \int_{\Delta\Sigma} d^2 x \; \rho_a(x) \; \simeq 0 \quad \text{for} \quad \Delta\Sigma \gtrsim 1/Q_s^2
$$

• The densely packed gluons shield their color charges each other, to diminish their mutual repulsion, and thus allow for a maximal density state.

(E.I., McLerran 01; A. Mueller, 02)

• When "seen" over distance scales $\Delta x_{\perp} > 1/Q_s(Y)$, the gluons generate only dipolar color fields !

2. Gluon Saturation

• Gluon occupation number :

$$
n_g \equiv \frac{(2\pi)^3}{2 \cdot (N_c^2 - 1)} \frac{dN}{dYd^2\mathbf{k} d^2\mathbf{b}} \simeq \frac{\langle \rho_a(\mathbf{k})\rho_a(-\mathbf{k}) \rangle_Y}{\mathbf{k}^2}
$$

• Very large $k : \ln k^2 \gg \alpha_s Y$ (MV model, DGLAP) :

$$
n_g(Y,\mathbf{k}) \,\approx\, \frac{\mu_0}{\mathbf{k}^2}
$$

• $\ln k^2 \sim \alpha_s Y$ but $k^2 \gg Q_s^2(Y)$ (BFKL):

$$
n_g(Y,\mathbf{k}) \approx \left(\frac{\mu_0}{\mathbf{k}^2}\right)^{1/2} e^{\omega \alpha_s Y} \propto \frac{1}{x^{\omega \alpha_s}}
$$

 $\bullet \; {\bm k}^2 \ll Q_s^2(Y): \qquad n_g(Y,{\bm k}) \, \approx$ 1 α_s $\ln \frac{Q_s^2(Y)}{k^2} \propto \ln \frac{1}{x}$

• <u>Power–law</u> increase with $1/k$ and $1/x$ is replaced by logarithmic behaviour =⇒ (marginal) saturation

• Condensate at Saturation:

$$
n_g(k_\perp \lesssim Q_s(Y)) \sim 1/\alpha_s
$$

• With increasing Y , new gluons are produced predominantly at \underline{high} momenta $\geq Q_s(Y)$.

NB: Different notations:

$$
\tau \equiv Y
$$
 and $\phi_{\tau}(k_{\perp}) \equiv n_g(Y, k_{\perp})$

• What is the saturation momentum ?

3. Saturation Momentum

- How to compute $Q_s(Y)$?
- Approach the saturation scale from the above $(k_\perp \gg Q_s(Y))$, where the linear BFKL eq. applies, and use the <u>saturation condition</u> at $k_{\perp} \simeq Q_s(Y)$.
- Saturation condition :

$$
n_g(Y,\mathbf{k}) \sim \frac{1}{\alpha_s} \quad \text{for} \quad k \sim Q_s(Y)
$$

• BFKL solution $(k_\perp \gg Q_s(Y))$:

$$
n_g(Y,\mathbf{k}) \approx \left(\frac{Q_0^2}{\mathbf{k}^2}\right)^{1/2} e^{\omega \bar{\alpha}_s Y} \exp\left\{-\frac{\ln^2\left(\mathbf{k}^2/Q_0^2\right)}{2\beta \bar{\alpha}_s Y}\right\}
$$

Exercice Show that the saturation condition together with the BFKL solution imply:

$$
Q_s^2(Y) = Q_0^2 e^{c\bar{\alpha}_s Y}, \quad c \equiv \frac{-\beta + \sqrt{\beta(\beta + 8\omega)}}{2} = 4.84...
$$

- Controlled up to terms $O(\ln Y)$ in the exponent.
- Replace $Q_0^2 \to Q_s^2(Y)$ as the reference scale :

$$
\ln \frac{\mathbf{k}^2}{Q_0^2} = \ln \frac{\mathbf{k}^2}{Q_s^2(Y)} + c\bar{\alpha}_s Y
$$

$$
n_g(Y, \mathbf{k}) \approx \frac{1}{\alpha_s} \left(\frac{Q_s^2(Y)}{\mathbf{k}^2}\right)^{\gamma_s} \exp \left\{-\frac{\ln^2 \left(\mathbf{k}^2/Q_s^2(Y)\right)}{2\beta \bar{\alpha}_s Y}\right\}
$$
where $\gamma_s \equiv 1/2 + c/\beta \approx 0.64$.

4. Geometric Scaling

The previous results suggests that for $k_{\perp} \leq Q_s(Y)$:

$$
n_g(Y,\boldsymbol{k}) \,\approx\,\frac{A}{\bar{\alpha}_s}\left(\ln\frac{Q_s^2(Y)}{\boldsymbol{k}^2}\,+\,B\right)
$$

where the numbers A and B are not under control.

- At saturation, the gluon distribution: i) scales as a function of $\tau \equiv Q_s^2(Y)/\mathbf{k}^2$; ii) it is marginally universal : it depends upon the initial conditions only logarithmically, via Q_s .
- What about k_{\perp} above but near Q_s ?

$$
n_g(Y,\mathbf{k}) \approx \frac{C}{\bar{\alpha}_s} \left(\frac{Q_s^2(Y)}{\mathbf{k}^2}\right)^{\gamma_s} \exp\left\{-\frac{\ln^2\left(\mathbf{k}^2/Q_s^2(Y)\right)}{2\beta\bar{\alpha}_s Y}\right\}
$$

• If $k > Q_s$, but $\ln \left(\frac{\mathbf{k}^2}{Q_s^2(Y)} \right) \ll \bar{\alpha}_s Y$, the diffusion term can be neglected:

$$
n_g(Y,\mathbf{k}) \approx \frac{C}{\bar{\alpha}_s} \left(\frac{Q_s^2(Y)}{\mathbf{k}^2}\right)^{\gamma_s}
$$

 \Rightarrow approximate scaling persists above Q_s !

New anomalous dimension: $\gamma_s \approx 0.64$

• A natural explanation for the "geometric scaling" recently identified in the HERA data (see below). [Stasto, Golec-Biernat, and Kwieciński, 2000]

A "phase-diagram" for high-energy QCD

- Saturation line: $Q_s^2(Y) \simeq Q_0^2 e^{\lambda Y}$
	- $\lambda = 4.84 (\alpha_s N_c/\pi) \simeq 1$ at LO BFKL level $\lambda \approx 0.3$ for $Y = 5 \cdots 9$ from NLO BFKL equation (Triantafyllopoulos, 02)
- "Extended scaling" : $Q_s^2(Y) < Q^2 < Q_s^4(Y)/Q_0^2$ Scaling window \approx BFKL window
- Scaling violation by the "diffusion" term

• Weak field (low density) regime: $V^{\dagger}(\boldsymbol{x}) \approx 1 + ig \alpha(\boldsymbol{x})$

$$
\mathcal{N}_Y(\boldsymbol{r}) \sim \alpha_s \boldsymbol{r}^2 \frac{xG(x,1/\boldsymbol{r}^2)}{\pi R^2}
$$

 \Rightarrow for x low enough and/or r large enough: Violation of the unitarity bound $\mathcal{N}_Y(\boldsymbol{r}) \leq 1$!

• However, when $r \gtrsim 1/Q_s(Y)$, the dipole is probing strong fields $(g\alpha \sim 1)$, for which :

$$
\langle V^{\dagger}(\boldsymbol{x}) V(\boldsymbol{y}) \rangle_Y \ll 1 \quad \text{for} \quad |\boldsymbol{x} - \boldsymbol{y}| \gg 1/Q_s(Y)
$$

 $1/Q_s(\mathcal{Y})$: correlation length for the Wilson lines

• Dipole Unitarization: $\mathcal{N}_Y(r) \sim 1$ for $r \gtrsim 1/Q_s(Y)$

• For an inhomogeneous target, this holds at fixed impact parameter:

 $\mathcal{N}_Y(\mathbf{r},\mathbf{b}) \simeq 1$ ("blackness") for $r \gtrsim 1/Q_s(Y,\mathbf{b})$

B. The Balitsky–Kovchegov equation • An evolution equation for $S_Y(\boldsymbol{x}, \boldsymbol{y})$: ∂ ∂Y $\left\langle \text{tr}(V_{\boldsymbol{x}}^{\dagger}V_{\boldsymbol{y}})\right\rangle_Y=\alpha_s$ \mathcal{L} z $(\bm{x- y})^2$ $(\boldsymbol{x}\!-\!\boldsymbol{z})^2(\boldsymbol{y}\!-\!\boldsymbol{z})^2$ $\overline{1}$ $- N_c \, \text{tr}(V_{\bm{x}}^\dagger V_{\bm{y}}) \, + \, \text{tr}(V_{\bm{x}}^\dagger V_{\bm{z}}) \, \text{tr}(V_{\bm{z}}^\dagger V_{\bm{y}})$ $\overbrace{\text{r oint } f(t)}$ 2-point ftion $\overline{4 \cdot \sinh f_{\text{tion}}}$ 4-point ftion $\overline{}$ Y

- Balitsky (96): First equation in an infinite hierarchy!
- A closed equation can be obtained assuming only 2-point correlations + Large $N_c \gg 1$:
	- $\left\langle \text{tr}(V_{\pmb{x}}^\dagger V_{\pmb{z}}) \, \text{tr}(V_{\pmb{z}}^\dagger V_{\pmb{y}}) \right\rangle_Y \; \approx \; \left\langle \text{tr}(V_{\pmb{x}}^\dagger V_{\pmb{z}}) \right\rangle$ Y $\left\langle \text{tr}(V_{\bm{z}}^{\dagger}V_{\bm{y}})\right\rangle$ Y \Rightarrow Kovchegov's equation (99):

$$
\frac{\partial}{\partial Y} S_Y(\boldsymbol{x}, \boldsymbol{y}) = \bar{\alpha}_s \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2} \left\{-S_Y(\boldsymbol{x}, \boldsymbol{y}) + S_Y(\boldsymbol{x}, \boldsymbol{z}) S_Y(\boldsymbol{z}, \boldsymbol{y})\right\}
$$

Strictly justified, e.g., for a large nucleus $(A \gg 1)$. Simple toy equation to study unitarization !

Alternatively, an equation for $\mathcal{N}_Y = 1 - \mathcal{S}_Y$:

$$
\frac{\partial}{\partial Y} \mathcal{N}_Y(\boldsymbol{x}, \boldsymbol{y}) = \bar{\alpha}_s \int_{\boldsymbol{z}} \frac{(\boldsymbol{x} - \boldsymbol{y})^2}{(\boldsymbol{x} - \boldsymbol{z})^2 (\boldsymbol{y} - \boldsymbol{z})^2}
$$
\n
$$
\left\{ -\mathcal{N}_Y(\boldsymbol{x}, \boldsymbol{y}) + \mathcal{N}_Y(\boldsymbol{x}, \boldsymbol{z}) + \mathcal{N}_Y(\boldsymbol{z}, \boldsymbol{y}) - \mathcal{N}_Y(\boldsymbol{x}, \boldsymbol{z}) \mathcal{N}_Y(\boldsymbol{z}, \boldsymbol{y}) \right\}
$$
\n
$$
\text{BFKL} \qquad \text{Non-linear}
$$

.

- Very complete numerical studies, which exhibit :
	- unitarization $(\mathcal{N}_Y \simeq 1)$ for $r \gtrsim 1/Q_s(Y)$
	- the energy dependence of $Q_s(Y)$

[Armesto, Braun, 01; Golec-Biernat, Motyka, Stasto, 01]

— suppression of infrared diffusion

[Golec-Biernat, Motyka, Stasto, 01]

- geometric scaling at saturation $(r \gtrsim 1/Q_s)$
- geometric scaling <u>below</u> saturation $(r < 1/Q_s)$, down to rather small values of $rQ_s(Y)$.

[Levin, Tuchin, 01; Golec-Biernat, Motyka, Stasto, 01; Lublinsky, 02]

— impact parameter dependence and violation of Froissart bound [Golec-Biernat, Stasto, 03]

— applications to the phenomenology of DIS at HERA [Gotsman, Levin, Lublinsky, Maor (02)] and of heavy ion collisions at RHIC ("Cronin effect") [Albacete, Armesto, Kovner, Salgado, Wiedemann, 03]

• All these features have been confirmed and further studied by Rummukainen, Weigert (03), via a direct resolution of the functional RGE on a lattice.

- Approximate analytic solutions: Physical content is even more manifest ! Kovchegov, 99; Levin, Tuchin, 00–01; E.I., McLerran, 2001; E.I., Itakura, McLerran, 2002; Mueller, Triantafyllopoulos, 02; E.I., Mueller 03; Munier, Peschanski, 03
- Small dipole $(r \ll 1/Q_s(Y)) \Longrightarrow$ BFKL eq.

$$
\mathcal{N}_Y(\boldsymbol{r}) \approx \left(\boldsymbol{r}^2 Q_0^2\right)^{1/2} e^{\omega \bar{\alpha}_s Y} \exp\left\{-\frac{\ln^2\left(1/\boldsymbol{r}^2 Q_0^2\right)}{2\beta \bar{\alpha}_s Y}\right\}
$$

• Saturation condition: $\mathcal{N}_Y(\boldsymbol{r}) \sim \mathcal{N}_0$ when $r \sim 1/Q_s(Y)$ (say, $\mathcal{N}_0 = 0.5$)

$$
Q_s^2(Y) \simeq Q_0^2 e^{\lambda Y}
$$
 with $\lambda \simeq 4.8\bar{\alpha}_s$

• Replace Q_0 by $Q_s(Y)$ as the reference scale:

$$
\mathcal{N}_Y(\boldsymbol{r}) \approx \mathcal{N}_0 \left(\boldsymbol{r}^2 Q_0^2 \right)^{\gamma_s} \exp \left\{ -\frac{\ln^2 \left(1/\boldsymbol{r}^2 Q_s^2(Y) \right)}{2\beta \bar{\alpha}_s Y} \right\}
$$

• For r near $1/Q_s(Y) \Longrightarrow$ Geometric scaling :

$$
\mathcal{N}_Y(\boldsymbol{r}) \approx \mathcal{N}_0 \left(\boldsymbol{r}^2 Q_0^2\right)^{\gamma_s} \text{ with } \gamma_s \simeq 0.63
$$

• Large dipole: $r \gg 1/Q_s(Y) \Longrightarrow$ Simple eq. for $S_Y(\mathbf{r})$ $\mathcal{N}_Y(\bm{r}) \approx \, 1 \, - \, \kappa \exp\bigg\{ - \frac{1}{4c}$ $\ln^2\left(\bm{r}^2 Q_s^2(Y)\right)$ \mathcal{L}

with $c \simeq 4.8$ [Levin, Tuchin, 00; E.I., Mueller 03]

Figure 1: The functions $k\phi(k, Y)$ constructed from solutions to the BFKL and the Balitsky-Kovchegov equations for different values of the evolution parameter $Y = \ln(1/x)$ ranging from 1 to 10. The coupling constant $\alpha_s = 0.2$.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65 (2002) 074037; hep-ph/0110325

Figure 2: The function $(k/Q_s(Y)) \phi(k, Y)$ plotted versus $k/Q_s(Y)$ for different values of rapidity Y ranging from 10 to 23. The saturation scale $Q_s(Y)$ corresponds to the position of the maximum of the function $k \phi(k, Y)$.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65 (2002) 074037; hep-ph/0110325

C. Saturation & Geometric Scaling at HERA

1. The Golec-Biernat–Wüsthoff model (1999)

$$
\sigma_{\rm dipole}(x,\bm{r})\,=\,\sigma_0\bigg(1-\exp\bigg\{-\frac{\bm{r}^2Q_s^2(x)}{4}\bigg\}\bigg)
$$

$$
Q_s^2(x) = 1 \text{GeV}^2 (x_0/x)^{\lambda}
$$

"Saturation" : unitarization $(\sigma_{\text{dipole}}(x, r_{\perp}) \simeq \sigma_0)$ over a energy dependent scale $1/Q_s(x)$

- High $Q^2 \gg Q_s^2(x)$: $F_2(x, Q^2) \sim \sigma_0 Q_s^2(x) \ln (Q^2/Q_s^2(x)) \propto x^{-\lambda}$ $Q_s(x)$ acts effectively as an infrared cutoff
- Low $Q^2 \ll Q_s^2(x)$: $F_2(x, Q^2) \sim \sigma_0 Q^2 \ln (Q_s^2(x)/Q^2) \propto \ln(1/x)$
- Remarkably good fit to the (old) small–x data at HERA (F_2, F_2^D) at $x < 0.01$ with only 3 parameters $\sigma_0 = 23 \,\text{mb}, \quad x_0 = 3 \times 10^{-4}, \quad \lambda \simeq 0.3$
- 'Hard' saturation scale: $Q_s \ge 1$ GeV for $x \le 10^{-4}$
- Good description of the 'hard–to–soft' transition in F_2 with lowering Q^2
- No QCD evolution at small r_{\perp} : $\sigma_{\rm dipole} (x, \bm{r}) \, \propto \, \bm{r}^2 Q_s^2 (x) \, \, {\rm instead \, \, of} \, \, \bm{r}^2 x G(x, 1/\bm{r}^2)$
- No impact parameter dependence

Transition to low Q2

Figure 3: $F_2(x,Q^2)$ as a function of Q^2 for fixed $y =$ $Q^2/(sx)$. The solid lines: the model with DGLAP evolution by BGBK and the dashed lines: the saturation model by GBW. The curves are plotted for $x < 0.01$. Full circles: ZEUS data and open circles: H1 data.

Figure 4: The ratio of $\sigma_{diff}/\sigma_{tot}$ versus the $\gamma^* p$ energy W. The data is from ZEUS and the solid lines correspond to the results of the DGLAP improved model with massless quarks (BGBK).

3. A CGC fit to the HERA data

• Improving the GBW model:

— DGLAP improvement by Bartels, Golec-Biernat, Kowalski (02)

$$
\sigma_{\text{dipole}}(x,\boldsymbol{r}) = \sigma_0 \Big(1 - \exp \big\{ - \alpha_s \boldsymbol{r}^2 x G(x,1/\boldsymbol{r}^2) \big\} \Big)
$$

(Glauber-like exponentiation)

— Adding the b–depedence: Kowalski, Teaney (03)

$$
xG(x, 1/r^2)T(b)
$$
 with $T(B) = \frac{1}{2\pi R^2} \exp(-b^2/2R)$

— Adding BK dynamics by Gotsman, Levin, Lublinsky, Maor (03)

Numerical matching of BK and DGLAP

 \Rightarrow Rather good global fits !

- Can we directly probe the <u>BFKL</u> dynamics towards saturation ?
	- Anomalous dimension < 1
	- Geometric scaling near Q_s
	- Scaling violations by the diffusion term
	- Saturation exponent $\lambda \simeq 0.3$
- Focus on smallish Q^2 : up to 50 GeV²
- Use analytic results for the dipole amplitude

• The CGC fit (E.I., Itakura, Munier, 03)
\n
$$
\sigma_{\text{dipole}}(x, r) = 2\pi R^2 \mathcal{N}(rQ_s, Y)
$$
\n
$$
\mathcal{N}(rQ_s, Y) = \mathcal{N}_0 \left(\frac{r^2 Q_s^2}{4}\right)^{\gamma + \frac{\ln(2/rQ_s)}{\kappa \lambda Y}} \text{for } rQ_s \le 2,
$$
\n
$$
\mathcal{N}(rQ_s, Y) = 1 - e^{-a \ln^2(b \, rQ_s)} \text{for } rQ_s > 2,
$$

$$
Q_s \equiv Q_s(x) = (x_0/x)^{\lambda/2} \text{ GeV}
$$

$$
\gamma = 0.63, \quad \kappa = 9.9 \text{ (fixed by BFKL)}
$$

$$
a, b \text{ : fixed by continuity at } rQ_s = 2
$$

- \implies The same 3 parameters as in the GBW model: R, x_0 and λ
- BFKL anomalous dimension at saturation : $\gamma = 0.63$
- Effective anomalous dimension :

$$
\gamma_{\text{eff}}(rQ_s, Y) \equiv -\frac{d \ln \mathcal{N}(rQ_s, Y)}{d \ln(4/r^2Q_s^2)} = \gamma_s + 2 \frac{\ln(2/rQ_s)}{\kappa \lambda Y}
$$

=⇒ Scaling violation !

 $\bullet\,$ Fit to the ZEUS data for $F_2(x,Q^2)$ within the range:

$$
x \le 10^{-2}
$$
 and $0.045 \le Q^2 \le 45 \,\text{GeV}^2$

(156 data points)

Figure 5: The dipole amplitude for two values of x , compared to the pure scaling functions with "anomalous dimension" $\gamma = \gamma_s = 0.63$ and $\gamma = 0.84$.

$$
\gamma_{\text{eff}}(rQ_s, Y) \equiv -\frac{d \ln \mathcal{N}(rQ_s, Y)}{d \ln(4/r^2Q_s^2)} = \gamma_s + 2 \frac{\ln(2/rQ_s)}{\kappa \lambda Y}
$$

Figure 6: The F_2 structure function in bins of Q^2 for small (upper part) and moderate (lower part) values of Q^2 . The full line shows the result of the CGC fit with $\mathcal{N}_0 = 0.7$ to the ZEUS data for $x \leq 10^{-2}$ and $Q^2 \leq 45 \text{ GeV}^2$. The dashed line shows the predictions of the pure BFKL part of the fit (no saturation).

Figure 7: The same as before, but for large Q^2 . Note that in the bins with $Q^2 \geq 60 \,\text{GeV}^2$, the CGC fit is extrapolated outside the range of the fit $(Q^2 \, < \, 50 \, \text{ GeV}^2)$ and $x \le 10^{-2}$, to better emphasize its limitations.

\mathcal{N}_0 /model	0.5	0.6	0.7	0.8	0.9	GBW
	146.43	129.88	123.63	125.61	133.73	243.87
$\chi^2/\text{d.o.f}$	0.96	0.85	0.81	0.82	0.87	1.59
x_0 (\times 10 ⁻⁴)	0.669	0.435	0.267	0.171	0.108	4.45
	0.252	0.254	0.253	0.252	0.250	0.286
R (fm)	0.692	0.660	0.641	0.627	0.618	0.585

Table 1: The CGC fits for different values of \mathcal{N}_0 and 3 quark flavors with mass $m_q = 140$ MeV. Also shown is the fit obtained by using the GBW model.

Table 2: The CGC fits for three values of \mathcal{N}_0 and quark masses $m_q = 50$ MeV (left) and $m_q = 10$ MeV (right).

1) $0.25 < \lambda < 0.29$ is in agreement with the NLO BFKL calculation by Triantafyllopoulos (02)

2) Scaling violation is essential to describe the data.

3) Remarkable agreement even at $Q^2 \ll 1 \ {\rm GeV^2}$ (quark–hadron duality)

VI. Saturation Physics at RHIC Geometric Scaling and High- p_{\perp} Suppression Kharzeev, Levin, McLerran (02)

 dN dyd^2p_{\perp} $=\frac{\alpha_s}{R}$ πR_A^2 1 p_{\perp}^2 \mathcal{L} $dk_\perp^2 \alpha_s \varphi_A(x_1, k_\perp^2) \varphi_A(x_2, (p-k)_\perp^2)$

- $\varphi_A(x, k_\perp^2)$ = the unintegrated gluon distribution
- $x_{1,2} = (p_\perp/\sqrt{s}) \exp(\pm \eta)$
- η = the (pseudo)rapidity of the produced gluon
- $\pi R_A^2 \propto N_{part}^{2/3} =$ the nuclear overlap area
- $Q_s^2(x, A) \propto N_{part}^{1/3}$ = the saturation momentum for the considered centrality

• High
$$
p_{\perp} \gg Q_s^2(x)/\Lambda : \varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2 Q_s^2}{\alpha_s k_{\perp}^2}
$$

\n
$$
\frac{dN}{dy d^2 p_{\perp}} \sim \frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{p_{\perp}^2} dk_{\perp}^2 \frac{Q_s^2}{k_{\perp}^2} \frac{Q_s^2}{p_{\perp}^2} \sim \frac{\pi R_A^2 Q_s^4}{\alpha_s p_{\perp}^4} \sim N_{\text{coll}}
$$
\n• $Q_s(x) < p_{\perp} < Q_s^2(x)/\Lambda : \varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2}{\alpha_s} (Q_s^2 / k_{\perp}^2)^{1/2}$ \n
$$
\frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{p_{\perp}^2} dk_{\perp}^2 \left(\frac{Q_s^2}{k_{\perp}^2}\right)^{1/2} \left(\frac{Q_s^2}{p_{\perp}^2}\right)^{1/2} \sim \frac{\pi R_A^2 Q_s^2}{\alpha_s p_{\perp}^2} \sim N_{\text{part}}
$$
\n• Low $p_{\perp} < Q_s(x) : \varphi_A(x, k_{\perp}^2) \approx \frac{\pi R_A^2}{\alpha_s}$ \n
$$
\frac{dN}{dy d^2 p_{\perp}} \sim \frac{\pi R_A^2}{\alpha_s p_{\perp}^2} \int^{Q_s^2} dk_{\perp}^2 \sim \frac{\pi R_A^2 Q_s^2}{\alpha_s p_{\perp}^2} \sim N_{\text{part}}
$$

• "Nuclear modification factor":

The ratio of the AA to the $p + p$ hadron yields scaled by nuclear geometry (T_{AB}) :

$$
R_{AA}(p_T) \,=\, \frac{d^2N^{\pi^0}_{AA}/dydp_T}{\langle T_{AB} \rangle \,\times\, d^2\sigma^{\pi^0}_{pp}/dydp_T}
$$

 $R_{AA}(p_T)$ measures the deviation of AA from an incoherent superposition of NN collisions in terms of suppression $(R_{AA} < 1)$ or enhancement $(R_{AA} > 1)$.

The RHIC data for Au–Au collision at $s = 130 \text{ GeV}^2$ and $s = 200 \text{ GeV}^2$ show a significant suppression (by a factor of 4 to 5), and are consistent within the error bars with N_{part} -scaling !

Figure 8: Invariant π^0 yields measured by PHENIX in peripheral (*left*) and in central (*right*) $Au+Au$ collisions (stars), compared to the N_{coll} scaled p+p π^0 yields (circles) and to a NLO pQCD calculation (gray line). The yellow band around the scaled p+p points includes in quadrature the absolute normalization errors in the p+p and Au+Au spectra as well as the uncertainties in T_{AB} . From the recent review by D. $d'F$ nterria nucl ex/0300015

Figure 9: Nuclear modification factor, $R_{AA}(p_T)$, in peripheral and central $Au+Au$ reactions for charged hadrons (*left*) and π^0 (right) measured at $\sqrt{s_{NN}}$ = 200 GeV by STAR and PHENIX respectively. A comparison to theoretical curves:

Figure 10: Left: $R_{AA}(p_T)$ measured by BRAHMS at $\eta = 0$ and $\eta = 2.2$ for 0–10% most central and for semi-peripheral (40-60%) Au+Au collisions. Right: Ratio R_{η} of R_{cp} distributions at $\eta = 2.2$ and $\eta = 0$. From D. d'Enterria, nuclex/0309015