IV. The Colour Glass Condensate
A. Effective theory for the small-x gluons

e The small-z gluons ~ Classical color fields radiated
by the fast partons with =’ > x

(D,,F”“)a(:c) — JH(x)

J#(x) = the color current due to the fast partons.
D, =0, —igA%T*, D% = 9,0% — gfbc A
e The structure of the color current

The fast partons move nearly at the speed of light in
the positive z (or ) direction.

— J! has only a ‘plus’ component: J/ = 6" p,
— p, is localized near the light-cone: p, o< d(z7)
— p, is independent of LC time x™

JH(x) =~ P T6(x7 ) pa(x)

a

e The color charge density p,(x) : a random variable
with correlations (p- - p), determined by the
dynamics at the larger scales 2’ > x

—> Weight function(al) W,[p] (gauge—invariant)

(FFH(a, D)FF (@, g) /D o FFi(@) FHi(g)

Fr L= 8+A; [p] : the classical solution in LC gauge.




fast partons

small-x gluon Alp]

e With decreasing x, new modes become relatively
fast, and must be included in the classical source p

—> Evolution of the weight function W, [p] with x
e Quantum evolution is computed in perturb. theory,

by integrating out the fast gluons in layers of x :

— leading—log 1/z for the newly radiated gluons

— to all orders in the classical field A[p| generated
by the color source constructed in previous steps

—> Functional evolution equation for W, |[p] :

OWy |p] 0

S = —aH|p. a—p} Wy (o]

e (Classical theory (a stochastic Yang—Mills theory)

+ Quantum evolution = An effective theory

e Main difference w.r.t. BFKL: non-linear effects
A ~ 1/¢g : non—linear effects must be treated exactly !

— exact solution A[p| to the classical EOM;

— exact background field quantum calculation.




Why “C G C”

e “Color” : Obvious !

e “Glass”: Separation in time scales between the
small-z gluons and their fast sources
Fast partons (z’ > x) are frozen over the natural

time scale for dynamics at x, namely:

2k 2Pt
)~ E Y e

X

One can therefore solve the dynamics of the small—x
gluons at fixed distribution of the fast partons, and

only then average over the latter.

A similar situation: “spin glass”

Collection of magnetic impurities (“spins”) randomly
distributed on a non—magnetic lattice.

spins «— small-x gluons

spin positions «— color charge p

e “Condensate” : Coherent state with high quantum

occupancy (~ 1/ag at saturation)

dN 1

for k* S Q%(Y)

AVd2k d2b  «,




B. The classical solution A[p]

e What is the color field of a fast moving gluon ?

e Recall the corresponding problem in QED:

The Weiszacker—Williams field of a fast (v >~ ¢)
charged particle.

e Start in the particle rest frame: a static electric field,

radially oriented (spherical symmetry).

e Make a boost with velocity v along z :
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e A magnetic field is generated: B = v x E

e Asv—c:F, - 0and B, — 0
Also: £, = B,, FE, = —B, (EL-B, =0)




Fields localized at z = ¢, or = = (t — 2)/V2 = 0,
and independent of 21 = (t + 2)/v/2 (plane wave)

LC variables: the only non-zero field strength is
Fti=\2E" =+/2¢7pB

Maxwell eqs: 0, F*" = 6+ p with p = 0(x ™ )p(x)
b
Vi
a =A™ in the COV—-gauge 0*A, =0

The non-Abelian problem: D, F"# = §* p(T)
The COV—gauge solution is simple again !

FTt =0 p = —0'a, with — Via = p

AL(Z) = 6P a, (F) with —V3 a, = p,

Explicitly

- d?y 1 -
ag(x, ) :/ - In (@ — 9)2A2 Pa(T”,Y)

— IR cutoff A? for the transverse dynamics
—> locality in &~

But gauge—invariant observables remain non—linear,

as they involve Wilson lines built with AT = o/ !

Obvious for dipole scattering :

S— Vi(z) =P exp{z’g/dx_aa(a:_,w)ta}




Exercice | The gluon distribution involve the

gauge-invariant operator O,. Show that, when
evaluated in the COV—gauge, this operator reads:

—

)

81

O (

=T { V() FH@VI(@) VG F ) V()]

Fit (%) |Lc

COV

Fit =0, Vi(z™,x) =P exp {zg/ dz_oza(z_,w)T“}

e NB: The longitudinal (™) structure of p (or «)
does matter : Pe /) dz7aa(@)T® £ gigaaT®
—> one cannot simply use a(z7,x) = d(z7 )a(x)
Rather: p (and «) is quasi—localized near x— = 0
within a distance Az~ ~ 1/kT =1/ P~

Smaller is x, more is the hadron (CGC) extended in x~

AN
1/xPt

External probe: localized in 27 (Az™ ~ 1/¢~) but

extended in z7: {AT(zT ~0,27), —oco <z~ < o0}




C. The gluon distribution of the valence quarks
(McLerran—Venugopalan model, 94)

The valence quarks: the only fast partons

— 2 not too small (say = > 0.01), so one can neglect
quantum evolution;

— a model for the initial condition for the evolution
towards smaller values of z.

e Large nucleus (A > 1) [like at RHIC] :
— Many color sources (N, x A) !

— A strong field even without quantum evolution !

e How to formulate this as a Color Glass 7

A small (1/Q < R, =) dipole “sees” valence quarks
from different nucleons = uncorrelated

o .

Z

W\/C<_...

(pa(@)pp(y))a = dapd(x — y) pa(x)

ta(x) = color charge squared per unit transverse area.

e Large nucleus ~ homogeneous = no « dependence




(@%)a = (gt*)(gt*)N.A = g°CpN_A

<Q2>A — fde fde <pa(m)pa(y)>A — (Nc2 o 1)WR?4MA
gA  2a,A

_ N SAl/S
27TR?A Ri “

e Weight function W4 [p] : a Gaussian with width pa

e Gluon distribution in the weak field limit

dN k>

fa(k?) = 7k? v 2k (27)2 <‘F;i(k)}2>A

Weak fields =— Linearized EOM — F1¢ ~ i(/@i/k2)p

Falk) = sz (k)0 (—H))

fa(k?) =~ AN, (a,Cr/m) = AN, fq(kz)

e The integrated gluon distribution (weak field)

Q? dk?

IGA(xaQZ) ~ (Nc2 o 1)7TR124/ (27T)2 ﬁ
CVSCF Q2
~ AN, - lnA2

— Infrared divergence !

Why 7 No x| —correlations among the color sources !

e One expects quantum evolution towards small x to

introduce correlations and energy dependence :

HA — HA (Ya k)




D. The Renormalization Group at Small—x

e p and its correlators change with decreasing x.

e Because of non—linear effects, the evolution couples
n—point functions (p(1)p(2)---p(n)), with different n.

It is most conveniently formulated as a functional

evolution equation for the weight function W,[p]

Strategy: Integrate out quantum fluctuations in
layers of k1 (or of x, or of rapidity Y = In(1/z)).

i) Start with the effective theory at scale AT = xPT.
The fast partons with k™ > AT have been already
integrated out.

ii) Compute correlation functions at a new scale bA™
with b < 1 but such that asIn(1/b) < 1.

These include:

— classical correlations associated with p and
described by W, [p]

— quantum correlations associated with the
‘semi-fast’ partons with bAT < kT < AT.

Quantum corrections are computed to O(as In(1/b))
but to all orders in the classical field A[p]

iii) Reinterpret the quantum corrections as classical

correlations associated with a (functional) change in
the weight function: Wy [p] — W [p] = W, + dW,,
(with 2’ = bx < ). This fixes dW,|p].




W [p] ) W]

X =bx <X X<Xy<X

e One-loop calculation with the Background—Field
Propagator:

e Since dW, x asIn(z/x") = asdY’, this evolution is

rewritten as a differential equation in Y :

aWy[p] o 1 5 a 5
oy 5/ st @) v 5y WY

Renormalization Group Equation at small—x.

Also known as “JIMWLK equation” (cf. A. Mueller)
Jalilian-Marian, Kovner, Leonidov, Weigert, 97;

Weigert, 2000; Iancu, Leonidov, McLerran, 2000

e A second—order functional differential equation.




e At each step Y — Y + dY in the evolution, only the

1-point and 2-point correlations of p need be adjusted:

X (@, y)[p] = (0% (x)dpy (y)), o(@)lp] = (6p% (2)),

e \, 0 : generalizations of the real and virtual parts of
the BFKL kernel including background field effects :

1 5 ab
O_a(w) — _/d2y X b(may)
2 opy-(y)
Functional relation o «— x ensures the cancellation

of infrared divergences in gauge—invariant quantities.
e Change of variables : p, — a, with —Viaa = pPq

aWy [Ck] 1 / ) ab )

- , 0% () Xayl®] 5ol (y)

oY 2

WY [O&]

e \ depends upon « via Wilson lines:

ab
o / CF K[ (- ViV - VI

N ) N

- (@2n)? (x - 2)*(z —y)?

e The coupling g enters only via the Wilson lines !




E. General consequences of the RGE

1. Longitudinal (x~) structure of « (or p)

e RGE: non-local in x| and in =~
Vi(x) =P exp { ig/dx_aa(a:_, a:)Ta}

e With decreasing x, the classical field extends in x~
Lower kT = xPT <= Increase Az~ ~ 1/k™

e For the theory at scale AT, the support of the field is
retricted to: x— < 1/AT

AT — bAT = dap with support at 1/AT < 2= < 1/bAT
The new field dap has no overlap with the previous one.

e The CGC is built in layers of x~.

G4  supp o, =N <Y;
| N =In(x~ PH)
00y . -
space-time rapidity
- N~Y
Y Y+dY N

e Wilson lines evolve by left (or right) multiplication:

T _ igéas T v/ 7

0

Vi (y) = igT* Vi (z)d(z — y)

day (z)




2. Quantum Evolution as a Random Walk

e Since day = aydY is a random quantity, the
evolution defines a random walk on SU(3) :

Y=ne, Vizx) =elan@T VI ()

(05(@)) = ot_y(@), (h@)ab(y)) = - Xy (@)

0n—1 and x,_1 : functionals of V,,_4

e RGE: A functional Fokker—Planck equation with
“time” Y and “diffusion coefficient” x[p] > 0.

Blaizot, E.I., Weigert, 2002

e Recent numerical solution (lattice)

Rummukainen, Weigert, sept. 2003

e Recall: Brownian motion

Small particle in a viscous liquid = Random velocity:
dz®/dt = v*(t), (w* ()P (t)) = v 6Pt —t)
with «, 3 = 1, 3. With discretized time: t = ne

— X, 1 = €Uy (vl = (1/€) v 5P §,,,

n?

T
e P(x,t) : probability to find the particle at point x
at time ¢. This obeys the diffusion (or FP) equation:

OP(x,t) D82P(a:,t)

=D ———— D =1?
Ot O0r*oxr® ’ v

e ((x—xg)?)(t) = 6Dt : “runaway solution”




3. Evolution equations for correlations

e A functional, non-linear, equation for Wy [a]

<= An infinite hierarchy of ordinary equations for

the n—point functions (a(1)a(2)---a(n))y
e Ola] : any observable or correlation functions :
(Ola])y = [ Dle]Ola] Wyla]
Take a derivative w.r.t. Y and use the RGE:

0 B 8Wy[Ck]
55 Ola)y = [ Dlal 0fa) 2

1 0 " 0
- (3, e S g O,
e Example: Ola] = (a(x)a(y))y
0

oy \w@)a(y))y = (x(@,9))y +(o(@)ay))y +{a(@)o(y))y

Via the Wilson lines within x and o, the r.h.s.
involves all the n—point functions with n > 2!

e Weak field (low density) regime: ga < 1
Vi(z) ~1+ig [dz"a(z™,z) =1 +iga(z)
1 - VIV, = —ig(a(z) — a(z))
— x is quadratic in «, and o is linear:

X ~ g*a?, o~ ga

— (Closed equation for the 2-point function: BFKL




e Strong field (high density) regime: ga ~ 1
This is relevant for correlations over large transverse

separations, or soft momenta:
z—y| 2 1/Q.(Y) or k2 S QXY)

ga(x) ~ 1 and strongly varying over a (relatively
short) distance Az, ~ 1/Q4(Y)

— Wilson lines V, VT : complex exponentials which

oscillate around zero over a distance ~ 1/Qs(Y")

e When probed over distances large compared to
1/Q,, the Wilson lines average to zero: V, V1 ~ 0

Vi)V (y))y < 1 for |&—y|>1/Q.Y)

Exercice | Show than, when V, VI ~ 0 :

1
k2

1 1
X (x,y) = §°= (z|

), x“P(k) ~ 5
T —Vﬁ_

e The RGE reduces to free Brownian motion (no g !)
— Duality at Saturation [E.I., McLerran 01]

e In particular, the evolution of the 2-point function

reduces to :




F. Non—Linear Gluon Evolution:

Saturation & Geometric Scaling

e Focus on the charge—charge correlator (p(x)p(y))y :

i) Interesting information about the spatial
distribution of the color charges.

ii) Access to the gluon distribution:

f(Y7 kQ) X <pa/(’€)pa(—k)>y

e Initial condition: z ~ 10~1...1072 — MYV model

(pa(k)pa(—k))y = po  (no correlation)

e Weak fields (k? > Q?(Y)) = BFKL

(pa(B)pa(—k))y ~ /o k2 ev®Y

e Strong fields (k* < Q%(Y)) = Free diffusion

(pa(k)pa(—k))y ~ (K*/m) (Y —Y,(k))

e Y — Y,(k) = rapidity excursion in the saturation

regime for a given k :
QX(Y)=k* for Y =Y,(k)

Q2(Y) = Qe = Y —Y (k) = L, 800

COlg k2




1. Color Neutrality at Saturation

(p(k)p(—k))y o« k* for k*><Qi(Y)
— Improved infrared behaviour
The behaviour expected from gauge symmetry !

Recall: In QED, the charge—charge correlator
[Ioo(k) = {pp) vanishes like k2 as k — 0.

Physical interpretation:

Color neutrality over a typical size 1/Qs(7)

Q% ax E/ d*z pu(x) ~ 0 for AXL 2 1/Q?
AX

A2
The densely packed gluons shield their color charges

each other, to diminish their mutual repulsion, and
thus allow for a maximal density state.

(E.I., McLerran 01; A. Mueller, 02)

When “seen” over distance scales Az, > 1/Qs(Y),
the gluons generate only dipolar color fields !




2. Gluon Saturation

e Gluon occupation number :

I AN (pa(k)pa(—K))y
97 2. (N2-1) dYd2kd?b — k?
e Very large k : Ink? > oY (MV model, DGLAP) :
Ho
ng(Y,k) ~ ﬁ

e Ink? ~ a,Y but k2> Q%(Y) (BFKL) :

j220) 1/2 worg 1
ng(Y, k) ~ <E> e Y T
1 Q) 1
e KX < QXY):  ny(V k) =~ o In =5 oc In—

| : -
AQCD QS (xX1) QS (Xz) k,

e Power—law increase with 1/k and 1/z is replaced by
logarithmic behaviour = (marginal) saturation




e Condensate at Saturation:
ng(kL S Qs(Y)) ~ 1/a,

e With increasing Y, new gluons are produced
predominantly at high momenta 2 Q4(Y").

1000

100 §

10 1

(br(k_l_)

0.1 L L P | L L M| L L M| L P | L L L
0.01 0.1 1 10 100 1000

k| / Qs (T0)

NB: Different notations:
T=Y and ¢- (k1) =ngy(Y, kL)

e What is the saturation momentum 7




3. Saturation Momentum
e How to compute Q,(Y) ?

e Approach the saturation scale from the above
(k1 > Qs(Y)), where the linear BFKL eq. applies,
and use the saturation condition at k; ~ Q4(Y).

Saturation condition :

ng(Y.k) ~ — for k ~ Qu(Y)

S

BFKL solution (k. > Qs(Y)) :

02 1/2 . 1n2 k2/Q2
ng(Y, k) = (k—g) e Y exp {— 2(5%3/0) }

Exercice | Show that the saturation condition
together with the BFKL solution imply:

—B+ /B(B+ 8w)
2

QYY) = Qe Y, ¢ = —4.84...

e Controlled up to terms O(InY") in the exponent.

e Replace Q% — Q%(Y) as the reference scale :

k> k> B
In Q_g = In Qg (Y) -+ CCESY
1 QO™ In? (k2/Q2(V))
ng(Y, k) ~ o ( 12 ) exp{ 25a.Y }

where vs =1/2 4 ¢/ ~ 0.64.




4. Geometric Scaling

The previous results suggests that for k; < Q4(Y) :

A Q:(Y)
ny(Y.k) & = (1 s B)
where the numbers A and B are not under control.
At saturation, the gluon distribution:

i) scales as a function of 7 = Q?(Y)/k? ;

ii) it is marginally universal : it depends upon the

initial conditions only logarithmically, via Q).

What about k£, above but near Q5 7

ny(V.K) ~ (Q2< >) exp{_lnz <k2/@z<Y>>}

k2 20aY

If k > Q,, but In (k?/Q2%(Y)) < &Y, the diffusion
term can be neglected:

v = £ (Z)

— approximate scaling persists above Q) !

New anomalous dimension: v, ~ 0.64

A natural explanation for the “geometric scaling”
recently identified in the HERA data (see below).

[Stasto, Golec-Biernat, and Kwiecinski, 2000]




A “phase-diagram” for high-energy QCD

2 4
Y, | Q) QA
Non-linear Linear
COLOR/GLASS
DILUTE GAS
BFKL
DGLAP
2 2 -
InA In Q

e Saturation line: Q%(Y) ~ Q% e’
A =4.84(asN./m) ~ 1 at LO BFKL level
Ax~03for Y =5---9 from NLO BFKL equation

(Triantafyllopoulos, 02)
e “Extended scaling” : Q*(Y) < Q* < Q%(Y)/Q3

Scaling window ~ BFKL window

e Scaling violation by the “diffusion” term




V. DIS off the C G C

A. Unitarization of Dipole Scattering

e Recall: Dipole factorization

1
2

Odipole (T, T) = 2/ d2b<1— S(:U,r,b)) = 2/ d*b Ny (r, b)

Y
S-matrix scatt. amplitude

S(z,7,b) = Ni (Vi@ V(y)) =1- Ay(r.b)

VT(a:) =P exp{z’g/dx_oza(x_,a:)Ta}




e Weak field (low density) regime: V1(x) ~ 1 + iga(x)
, vG(x,1/7?)

T R?
— for x low enough and/or r large enough:

Violation of the unitarity bound Ny (r) < 1!

Ny(’P) ~ QgT

e However, when r 2 1/Qs(Y), the dipole is probing
strong fields (ga ~ 1), for which :

Vi@)V(y)y < 1 for |&—y|>1/Q.(Y)

1/Qs(Y) : correlation length for the Wilson lines

e Dipole Unitarization: Ny (r) ~ 1 for r 2 1/Q4(Y)

1/Qy2) 1/Q (1)

e For an inhomogeneous target, this holds at fixed

impact parameter:

Ny (r,b) ~ 1 (“blackness”) for r £ 1/Q(Y, b)




B. The Balitsky—Kovchegov equation

e An evolution equation for Sy (x,y) :

ﬂ vl — (z—y)°
), = e [ T

(= Newr(ViVy) + tr(Vive) e (ViV) )

Y
2-point ftion 4-point ftion

e Balitsky (96): First equation in an infinite hierarchy!

e A closed equation can be obtained assuming only
2-point correlations + Large N, > 1 :

<tr(V£Vz)tr(V;Vy)>Y R <tI‘(V£Vz)>Y <tr(V;Vy)>Y

— Kovchegov’s equation (99):

0 . (x—y)
o) = o [ oy

{ — Sy (z,y) + Sy (=, Z>SY(Z’y)}

Strictly justified, e.g., for a large nucleus (A > 1).
Simple toy equation to study unitarization !

e Alternatively, an equation for Ny =1 — Sy :

9 Nlmw) - & (x—y)’
e = o | i

{_NY(ma y) + Ny (xz,z) + Ny (z,y) — Ny (=, Z)NY(Z’y)}
BFKL Non-linear




e Very complete numerical studies, which exhibit :
— unitarization (Ny ~ 1) for r 2 1/Q4(Y)
— the energy dependence of Qs(Y)
[Armesto, Braun, 01; Golec-Biernat, Motyka, Stasto, 01]
— suppression of infrared diffusion
[Golec-Biernat, Motyka, Stasto, 01]
— geometric scaling at saturation (r & 1/Qs)

— geometric scaling below saturation (r < 1/Qy),
down to rather small values of rQ4(Y).

[Levin, Tuchin, 01; Golec-Biernat, Motyka, Stasto, 01;
Lublinsky, 02]

— impact parameter dependence and violation of
Froissart bound [Golec-Biernat, Stasto, 03]

— applications to the phenomenology of DIS at
HERA [Gotsman, Levin, Lublinsky, Maor (02)]

and of heavy ion collisions at RHIC (“Cronin effect”)
[Albacete, Armesto, Kovner, Salgado, Wiedemann, 03]

e All these features have been confirmed and further
studied by Rummukainen, Weigert (03), via a
direct resolution of the functional RGE on a lattice.




Approximate analytic solutions:
Physical content is even more manifest !

Kovchegov, 99; Levin, Tuchin, 00-01; E.I., McLerran, 2001;
E.I., Itakura, McLerran, 2002; Mueller, Triantafyllopoulos, 02;
E.I., Mueller 03; Munier, Peschanski, 03

Small dipole (r < 1/Q4(Y)) = BFKL eq.

_ In? (1/72Q?
NY("“) ~ (erg)l/Q ewasY exp {_ z(ﬁé:)/QO) }

Saturation condition:

Ny (r) ~ Ny when r ~ 1/Q,(Y) (say, Ny = 0.5)

Q2(Y) ~ Q2eMY with A ~ 4.8a,

Replace Qo by Qs(Y) as the reference scale:

In? (1/72Q%(Y)) }
26aY

Ny (r) =~ Ny (7“2@8)% exp{—

For r near 1/Q4(Y) = Geometric scaling :

Ny (r) =~ Ny ('PZQ%)% with v ~ 0.63

Large dipole: r > 1/Q4(Y) = Simple eq. for Sy (r)

Ny(r) =~ 1 — mexp{ 4im2 (T2Q§(Y))}

C

with ¢ ~ 4.8 [Levin, Tuchin, 00; E.I., Mueller 03]
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Figure 1: The functions k¢(k,Y) constructed from solu-
tions to the BFKL and the Balitsky-Kovchegov equations
for different values of the evolution parameter Y = In(1/x)

ranging from 1 to 10. The coupling constant oy = 0.2.

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65
(2002) 074037; hep-ph/0110325
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Figure 2: The function (k/Qs(Y)) ¢(k,Y") plotted versus
k/Qs(Y) for different values of rapidity Y ranging from
10 to 23. The saturation scale Q5(Y') corresponds to the

position of the maximum of the function k ¢(k,Y").

From K. Golec-Biernat, L.. Motyka, A. M. Stasto, Phys Rev D65
(2002) 074037; hep-ph/0110325



C. Saturation & Geometric Scaling at HERA
1. The Golec-Biernat—Wiisthoff model (1999)

st = o1 - xp{ - L2}

Q2(z) = 1GeV? (20 /)

e “Saturation” : unitarization (ogipole(,71) =~ 00)
over a energy dependent scale 1/Q,(x)

e High Q> Q%(x) :
Fa(, Q%) ~ 00 Q3(a) In (Q2/Q2(x)) ox 2
Qs(x) acts effectively as an infrared cutoff

e Low Q% < Q%(x) :
Pa(w, @) ~ 00 Q2 In (Q2(2)/Q?)  In(1/2)

e Remarkably good fit to the (old) small-—x data at
HERA (F5, FQD) at r < 0.01 with only 3 parameters

oo =23mb, x9=3x10"% A~0.3
e ‘Hard’ saturation scale: Qs > 1 GeV for x < 10~*

e Good description of the ‘hard—to—soft’ transition in
F, with lowering Q?

e No QCD evolution at small r | :

Odipole (T, T) ox T2Q?(x) instead of r?xG(x,1/r?)

e No impact parameter dependence
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Figure 3: Fy(x,Q?) as a function of Q? for fized y =
Q?/(sxz). The solid lines: the model with DGLAP evolu-
tion by BGBK and the dashed lines: the saturation model
by GBW. The curves are plotted for x < 0.01. Full circles:
ZEUS data and open circles: H1 data.
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the results of the DGLAP improved model with massless
quarks (BGBK).



2. Geometric Scaling at HERA
e GBW model: oqipole(z,7) = O'(’I“QQE(CU))
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e Stasto, Golec-Biernat, and Kwiecinski, 2000 :

For z < 1072 and Q? < 400GeV?, data show
(approximate) scaling:
Q2
O-’y*p(aijz) ~ o(T), with 7= —/——

Q3 ()




3. A CGC fit to the HERA data

e Improving the GBW model:

— DGLAP improvement by Bartels, Golec-Biernat,
Kowalski (02)

Tdipole(T,T) = 00 (1 — exp{ — a,r’zG(z, 1/r2)})

(Glauber-like exponentiation)

— Adding the b—depedence: Kowalski, Teaney (03)

1

rG(z,1/r*)T(b) with T(B):27TR2

exp ( — b*/2R)

— Adding BK dynamics by Gotsman, Levin,
Lublinsky, Maor (03)

Numerical matching of BK and DGLAP
—> Rather good global fits !

e Can we directly probe the BFKL dynamics towards

saturation 7

— Anomalous dimension < 1

— Geometric scaling near ),

— Scaling violations by the diffusion term

— Saturation exponent A ~ 0.3

e Focus on smallish Q? : up to 50 GeV?

e Use analytic results for the dipole amplitude




e The CGC fit (E.I., Itakura, Munier, 03)
Tdipole (T, 7) = 2T R*N (rQs,Y)

9 N2\ v+ HEAEs)
N(rQsY) = N (T fs) for rQs < 2,
N(rQsY) = 1-— e~ aln®(brQs) for rQs > 2,

Qs = Qs(x) = (z9/2)M? GeV
v=0.63, k=29.9 (fixed by BFKL)
a, b : fixed by continuity at rQ)s = 2
— The same 3 parameters as in the GBW model:
R, x¢g and A
e BFKL anomalous dimension at saturation : v = 0.63

e Effective anomalous dimension :

dIn N (rQ,,Y) In(2/rQs)

Y)= — = vs+ 2
Yot (G, Y') din(4/2Q2) TP Ty

— Scaling violation !

e Fit to the ZEUS data for Fy(z, Q?) within the range:

<1072 and 0.045 < Q2 < 45 GeV?

(156 data points)
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Figure 5: The dipole amplitude for two values of x, com-
pared to the pure scaling functions with “anomalous di-

mension” v = v = 0.63 and v = 0.84.
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Figure 6: The F; structure function in bins of Q? for small
(upper part) and moderate (lower part) values of Q2. The
full line shows the result of the CGC fit with Ny = 0.7 to
the ZEUS data for z < 1072 and Q? < 45 GeV?. The
dashed line shows the predictions of the pure BFKL part
of the fit (no saturation).
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x < 1072), to better emphasize its limitations.



No/model 0.5 0.6 0.7 0.8 0.9 GBW
Y 146.43 | 129.88 | 123.63 | 125.61 | 133.73 | 243.87
x?/d.o.f 0.96 0.85 0.81 0.82 0.87 1.59
xo (x107%) || 0.669 | 0.435 | 0.267 | 0.171 | 0.108 | 4.45
A 0.252 | 0.254 | 0.253 | 0.252 | 0.250 | 0.286
R (fm) 0.692 | 0.660 | 0.641 | 0.627 | 0.618 | 0.585

Table 1: The CGC fits for different values of Ny and 3 quark

flavors with mass m, = 140 MeV. Also shown is the fit ob-
tained by using the GBW model.

mg = 50 MeV mgy = 10 MeV
No 0.5 0.7 0.9 0.5 0.7 0.9
x> 148.02 | 108.52 | 108.76 || 149.27 | 107.64 | 106.49
x?/d.o.f 0.97 0.71 0.71 0.98 0.70 0.70
zo (x1074) || 2.77 | 0.898 | 0.333 3.32 1.06 | 0.382
A 0.290 | 0.281 | 0.274 || 0.295 | 0.285 | 0.276
R (fm) 0.604 | 0.574 | 0.561 || 0.593 | 0.566 | 0.554

Table 2: The CGC fits for three values of Ny and quark
masses m, = 50 MeV (left) and m, = 10 MeV (right).

1) 0.25 < A < 0.29 is in agreement with the
NLO BFKL calculation by Triantafyllopoulos (02)

2) Scaling violation is essential to describe the data.

3) Remarkable agreement even at Q% < 1 GeV?

(quark—hadron duality)




VI. Saturation Physics at RHIC

Geometric Scaling and High-p, Suppression
Kharzeev, Levin, McLerran (02)

PplXy > (P=k))

A

dN Qg 1
ddePJ_ = 7rR2 p2 /dkﬁ_ Og @A(ajl,k‘i) SOA(ZUQ, (p _ k)i)
A Fl

e 0a(x,k7) = the unintegrated gluon distribution

® z1,2 = (pL/V/s)exp(£n)
e 1) = the (pseudo)rapidity of the produced gluon

2/3
e TRy NpC{Tt = the nuclear overlap area

e Q%(x,A) x N;C{ft = the saturation momentum

for the considered centrality




N

2
e High p, > Q*(z)/A : @A(x,ki) ~ T Q;

Qg ki
IN xR} /p‘i g L@ TR
co
dydsz_ Qg pi ki pa_ Qg pjl_

* Qul@) <pu < QA@)/A: pale k) ~ TR (Q2/R)V2

2 rpi 2\ 1/2 2\ 1/2 2 M2
WRA / dk‘i (QS) (%) N WRAQS NNpart

asp? Gl P Pl
R2
o Low p; < Qs(x) : SOA(x’ki) ~ WasA
2
Y ~ - 5 t
ddePJ_ @S pi 1 OCS pi par

e “Nuclear modification factor”:
The ratio of the AA to the p 4+ p hadron yields scaled by
nuclear geometry (Tap) :
d*N 2?4/ dydpr
Tap) % d?ol, /dydpr

Raa(pr) = <

Raa(pr) measures the deviation of AA from an
incoherent superposition of NN collisions in terms of
suppression (R4 4 <1) or enhancement (Ra4 >1).

The RHIC data for Au—Au collision at s = 130 GeV?
and s = 200 GeV? show a significant suppression (by a

factor of 4 to 5), and are consistent within the error bars

with Npap¢—scaling !




e pp — n°X @ 200 GeV (N _,[80-92%] scaled)

% AuAu — i°X @ 200 GeV [80-92%)]
m NLO pQCD, EKS nPDF, Q = p; [I.Sarcevic et al.]
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Figure 8: Invariant 7° yields measured by PHENIX in pe-
ripheral (left) and in central (right) Au+Au collisions (stars),
compared to the N, scaled p+p 7" yields (circles) and to a
NLO pQCD calculation (gray line). The yellow band around
the scaled p+p points includes in quadrature the absolute
normalization errors in the p+p and Au+Au spectra as well

as the uncertainties in T'4g. From the recent review by D.
AV vt~y a1 A1 <~ /OOONONT
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Figure 9: Nuclear modification factor, Ra4(pr), in periph-
eral and central Au+Au reactions for charged hadrons (left)

and 7Y (right) measured at \/syy = 200 GeV by STAR and
PHENIX respectively. A comparison to theoretical curves:
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Figure 10: Left: Raa(pr) measured by BRAHMS at n = 0
and n = 2.2 for 0-10% most central and for semi-peripheral
(40-60%) Au+Au collisions. Right: Ratio R, of R, distri-

butions at n = 2.2 and n = 0. From D. d’Enterria, nucl-
ex /0309015



