C. BFKL Evolution & The Small–x Problem

- Resum all terms $(\alpha_s \ln \frac{1}{x})$ $\big)^n$, $n \ge 1$, in $xG(x, Q^2)$, even if non–accompanied by powers of $\ln Q^2$.
- Local in x, but non–local in k_{\perp}
- Exponential increase with $Y \equiv \ln(1/x)$ ("rapidity")

$$
Y \equiv \ln \frac{1}{x} \sim \ln \frac{s}{Q^2} \qquad \mathrm{d}Y = \frac{\mathrm{d}x}{x} \simeq \mathrm{d}k_z \mathrm{d}b_z
$$

$$
xG(x, Q^2) \equiv \frac{dN}{dY}(x, Q^2) = \int^{Q^2} d^2k_{\perp} \frac{dN}{dYd^2k_{\perp}}
$$

 $=$ $\#$ of gluons per unit rapidity and localized within a transverse size $\Delta x_{\perp} \sim 1/Q$.

 $N(Y)$: # of gluons produced after a rapidity evolution Y

A more physical argument

- Gluons in the BFKL cascade are coherent in time. The lifetimes of the virtual gluons are strongly ordered along the cascade: $\Delta t_i \sim \frac{2 x_i P}{k_{i\perp}^2}$ $\Delta t_1 \gg \Delta t_1 \gg \ldots \Delta t_n \gg \Delta t$
- All the gluons with $x' \gg x$ are frozen over the natural time scale Δt for dynamics at x.
- The last gluon is emitted coherently off the global color charge of the previously emitted $N(Y)$ gluons
- Random distribution of 'fast' $(x' \gg x)$ gluons \longleftrightarrow Random color charge $Q^a = \sum_i Q_i^a$

$$
\langle Q^a \rangle = 0, \qquad \langle Q^2 \rangle_Y \equiv \left\langle \left(\sum_{i=1}^N Q_i^a \right)^2 \right\rangle_Y \sim g^2 N_c N(Y)
$$

Indeed: for one gluon $(gT^a)(gT^a) = g^2N_c$ The color charges of the $N(Y)$ gluons sum up incoherently.

• Assumption: After being emitted, gluons do not interact with each other.

- Probability for emitting a new gluon when $Y \rightarrow Y + dY$: $dP(Y) \propto q^2 N_c N(Y) dY \equiv \omega \alpha_s N(Y) dY$
- The average $\#$ of gluons at rapidity $Y + dY$:

 $N(Y + dY) = [1 + N(Y)]dP(Y) + N(Y)[1 - dP(Y)]$

$$
\implies \frac{dN}{dY} = \frac{dP}{dY} = \omega \alpha_s N(Y) \implies N(Y) \propto e^{\omega \alpha_s Y}
$$

- Unstable growth of the gluon distribution ! The radiated gluons act as sources for the emission of new gluons.
- BFKL equation provides the value of ω : $\omega = 4 \ln 2(N_c/\pi) \approx 2.65$

together with the k_{\perp} –spectrum of the emitted gluons.

 \Rightarrow The first problem of BFKL evolution at small–x :

Too rapid rise of total cross–sections with $1/x$ (or s)

- 1) Unacceptable phenomenology
- 2) Conceptual difficulties

1) Phenomenological difficulties of BFKL

- How to compute F_2 when $\alpha_s \ln \frac{1}{x} > \ln Q^2$? Collinear factorization does not apply beyond DLA. New factorization schemes will be introduced later: i) k_{\perp} –factorization ; ii) dipole picture
- In any case, at small–x, F_2 is driven by the gluon distribution, so BFKL generically implies : $F_2(x.Q^2) \propto 1/x^{\omega\alpha_s}$ with $\omega\alpha_s \simeq 0.5$ for $\alpha_s = 0.2$
- The data do rise indeed, but much slower ! Parametrization : $F_2(x, Q^2) \sim x^{-\lambda_{\text{eff}}(Q^2)}, x < 0.01$ HERA data: $\lambda_{\text{eff}}(Q^2)$ falls from 0.35 to 0.1 when Q^2 falls from 200 GeV² to 1 GeV².
- Similar conclusions from other high energy experiments ($\gamma^* \gamma^*$ scattering at L3, OPAL): The "BFKL intercept" $\alpha_P - 1 \equiv \omega \alpha_s$ is far too large!
- Next–to–leading order (NLO) corrections to BFKL could reduce α_P significantly.
- NLO BFKL become available recently: (Fadin, Lipatov (98); Ciafaloni, Camici (98)) and turned out to be larger then the leading–order ! $\omega_{\rm NLO} = \omega_{\rm LO} \left(1 - 6.47 \bar{\alpha}_s \right) = -0.16$ for $\alpha_s = 0.2$
- Resummations of higher–order effects have been proposed to cure this lack–of–convergence problem : Salam, 98; Ciafaloni, Colferai, 99; Brodsky, Fadin, Kim, Lipatov, Pivovarov, 99; Schmidt, 99; Forshaw, Ross, Sabio–Vera, 99
- E.g.: The collinear resummation by Salam, Ciafaloni, and Colferai \implies sensible results for ω_{NLO} :

From G. Salam, hep-ph/9910492

- Applications of NLO BFKL to phenomenology. Currently, a very active, and promising, field:
	- $-\gamma^* \gamma^*$ scattering: encouraging results
	- DIS: recent progress, but some problems remain to be solved [Bartels, Colferai, Gieseke, Kyrieleis, Qiao]

Figure 1: H1 and ZEUS data on the F_2 structure function shown in three bins of Q^2 as a function of x. The steep rise of the structure function at low x is clearly apparent.

From the review paper "Lectures on HERA physics", by B. Foster, EPJdirect A1, 1–11 (2003); hep-ex/0206011.

Figure 2: The coefficients $c(Q^2)$ and $\lambda(Q^2)$ from fits of the form $F_2(x, Q^2) = c(Q^2)x^{-\lambda(Q^2)}$ for $x < 0.01$

H1prelim-02-041, T. Lastovicka, talk presented at DIS 2002, April 2002 & H1 contribution to EPS2003, Aachen, July 2003

Figure 3: L3 results for the two–photon cross–section $\sigma_{\gamma^*\gamma^*}$ showing a strong deviation from LO BFKL. The continuous line is a BFKL–like fit with $\alpha_P - 1$ left as a free parameter. One finds: $\alpha_P - 1 \approx 0.28$ for $\sqrt{s} = 91$ GeV and $\alpha_P - 1 \approx 0.40$ for $\sqrt{s} = 183$ GeV.

From the review paper by Donnachie, J. Phys. G26: 689-695, 2000 hep-ph/0001035

Figure 4: Virtual gamma-gamma total cross section by the NLO BFKL Pomeron vs L3 Collaboration data at energy 183 GeV of e^+e^- collisions. Solid curves: NLO BFKL. Dashed: LO BFKL. Dotted: LO contribution. Two different curves are for two different choices of the Regge scale: $s_0 = Q^2/2$, $s_0 = 2Q^2$

From Kim, Lipatov, Pivovarov, hep-ph/9911228, presented to the VIIIth Blois Workshop, 1999

2) Unitarity violation by BFKL evolution

$$
\sigma_{\gamma^*p}(x,Q^2) = \frac{4\pi^2 \alpha_{\rm em}}{Q^2} F_2(x,Q^2) \propto \frac{1}{x^{\omega \alpha_s}} \sim s^{\omega \alpha_s}
$$

- But hadronic crosss-sections cannot grow like a power of s in the high–energy limit $s \to \infty$!
- (A) Froissart bound: $\sigma_{\text{tot}}(s) \leq \sigma_0 \ln^2 s$ as $s \to \infty$. Consequence of very general principles (unitarity, analitycity, $\cscisin g$ + short–rangeness (mass gap) In QCD one expects: $\sigma_0 \propto 1/m_{\pi}^2$.
- DIS: γ^* is a virtual state, not a hadron ! Still: γ^* is a superposition of hadronic states

$$
\implies \sigma_{\gamma^* p}(x, Q^2) \le \sigma_0 \ln^3 \frac{1}{x} \quad \text{as} \quad x \to 0
$$

- Clearly, BFKL (LO or NLO) violates this condition.
- (B) Unitarity bound on the S-matrix : $SS^{\dagger} = 1$ $\Rightarrow |S(x, b)| \leq 1$ for any impact parameter b. This condition too is violated by BFKL (see below).
- Is this a problem of the BFKL evolution of $xG(x, Q^2)$, or of the calculation of F_2 , or both? One expects multiple scattering to restore unitarity in the S–matrix.

One may imagine that F_2 unitarizes, while $xG(x, Q^2)$ keeps growing as a power of $1/x$.

The BFKL equation

• The unintegrated gluon distribution (with $k \equiv k_{\perp}$):

$$
xG(x, Q^2) \equiv \int^{Q^2} \frac{d\mathbf{k}^2}{\mathbf{k}^2} f(x, \mathbf{k}^2), \quad f(x, \mathbf{k}^2) = \frac{\partial xG(x, \mathbf{k}^2)}{\partial \ln \mathbf{k}^2}
$$

• **BFKL equation** $(Y = \ln(1/x)$ and $\bar{\alpha}_s = \alpha_s N_c/\pi$)

$$
\frac{\partial f(Y, \mathbf{k}^2)}{\partial Y} = \bar{\alpha}_s \int \frac{d^2 p}{\pi} \frac{\mathbf{k}^2}{p^2(\mathbf{k} - p)^2} \left\{ \underbrace{f(Y, p^2)}_{\text{real}} - \frac{1}{2} f(Y, \mathbf{k}^2) \right\}
$$

• "Real" : real gluon emission in one–step evolution

• "Virtual" : vertex and self-energy corrections

- The virtual term compensates the "infrared' divergence of the real term at $k = p$.
- DLA limit comes out as expected: for $k^2 \gg p^2$

$$
\frac{\partial f(Y, \mathbf{k}^2)}{\partial Y} \approx \bar{\alpha}_s \int^{\mathbf{k}^2} \frac{\mathrm{d} \mathbf{p}^2}{\mathbf{p}^2} f(Y, \mathbf{p}^2)
$$

The Gluon distribution of one quark

• Recall: gluon radiation by a fast quark ('bremsstrahlung')

$$
(p-k) \stackrel{\mu}{=} ((1-z)p, -k_{\perp}, (1-z)p)
$$

\n
$$
p^{\mu} = (p, 0_{\perp}, p) \stackrel{\text{(p-k)}}{\text{log}}
$$

\n
$$
k^{\mu} = (zp, k_{\perp}, zp)
$$

$$
d\mathcal{P} = \frac{\alpha_s C_F}{2\pi} \frac{dk^2}{k^2} \frac{1 + (1 - x)^2}{x} dx
$$

where $C_F \equiv t^a t^a = (N_c^2 - 1)/N_c = 4/3$

• One can identify this with the spectrum of the emitted gluons :

$$
\frac{\mathrm{d}N}{\mathrm{d}x\mathrm{d}\mathbf{k}^2} \equiv \frac{\mathrm{d}\mathcal{P}}{\mathrm{d}x\mathrm{d}\mathbf{k}^2} \simeq \frac{\alpha_s C_F}{\pi} \frac{1}{\mathbf{k}^2} \frac{1}{x} \quad \text{for} \quad x \ll 1
$$

• Hence, the integrated gluon distribution generated by a single quark :

$$
f_q(x, \mathbf{k}^2) \equiv \frac{\partial x G(x, \mathbf{k}^2)}{\partial \ln \mathbf{k}^2} = \mathbf{k}^2 x \frac{\mathrm{d}N}{\mathrm{d}x \mathrm{d}\mathbf{k}^2} = \frac{\alpha_s C_F}{\pi}
$$

• The (integrated) gluon distribution of one quark:

$$
xG_q(x,Q^2) = \int^{Q^2} \frac{\mathrm{d}k^2}{k^2} \frac{\alpha_s C_F}{\pi} = \frac{\alpha_s C_F}{\pi} \ln \frac{Q^2}{\Lambda^2}
$$

 $\Lambda = \text{infrared cutoff}$

• The simplest "proton" : $xG_p(x, Q^2) \simeq 3 xG_q(x, Q^2)$

• The solution to BFKL equation for $\alpha_s Y \gg \ln k^2$

$$
f(Y, \mathbf{k}^2) \propto \left(\frac{\mathbf{k}^2}{\mathbf{k}_0^2}\right)^{1/2} e^{\omega \bar{\alpha}_s Y} \exp \left\{-\frac{\ln^2\left(\mathbf{k}^2/\mathbf{k}_0^2\right)}{2\beta \bar{\alpha}_s Y}\right\}
$$

where: $\omega = 4 \ln 2 \approx 2.77$, $\beta \approx 33.67$.

- Exponential rise with Y .
- BFKL "anomalous dimension $1/2$ ": $f \propto \sqrt{k^2}$ In LO perturbation th., f is independent of k . DGLAP evolution: f is a function of $\ln k^2$.

BFKL: strong violation of Bjorken scaling: $F_2 \propto \sqrt{Q^2}$

• Diffusive behaviour in the variable $\ln k^2$ with diffusion "time" Y.

The evolution broadens the $\ln k^2$ -distribution of f.

 \Rightarrow New problem of BFKL evolution at small- x :

"Infrared diffusion" towards non–perturbative momenta

Even if the external momentum \mathbf{k} is hard $(\gg \Lambda_{\rm QCD}^2)$, the non-locality of the evolution makes it that, with increasing Y, $f(Y, \mathbf{k}^2)$ receives an increasingly large contribution from non–perturbative p .

- Problems with the introduction of the running coupling $\alpha_s(\mathbf{k}^2)$
- In practice: use an infrared cutoff k_c^2

Figure 5: The functions $k\phi(k, Y)$ constructed from solutions to the BFKL and the Balitsky-Kovchegov equations for different values of the evolution parameter $Y = \ln(1/x)$ ranging from 1 to 10. The coupling constant $\alpha_s = 0.2$.

 $k\phi(k, Y) \longleftrightarrow f(Y, k)/k; \quad k\phi(k, Y_0 = 0) = \delta\left(\ln k^2/k_0^2\right)$ From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65 (2002) 074037; hep-ph/0110325

III. Unitarity vs. Saturation in DIS

A. The idea of saturation

Gribov, Levin and Ryskin, 83; Mueller and Qiu, 86

- So far, the emitted gluons were assumed not to interact with each other
- Gluons within the same BFKL cascade are well separated in rapidity, so they cannot interact
- Gluons with similar rapidities but from different cascades interact with a cross–section $\sim \alpha_s$
- At small–x, the gluon density is large, which enhances gluon recombination

When RECOMBINATION = RADIATION \implies SATURATION

- What is the recombination probability ?
- In order to interact, the small–x gluons must overlap in transverse projection.

Indeed, since $\lambda_z \sim \frac{1}{xP} \gg \frac{1}{P}$, their longitudinal overlap is then automatic.

 $xG(x, Q^2)/\pi R^2 = \#$ of gluons (x, Q^2) per unit area.

- A typical gg cross-section: $\sigma_{gg}(Q^2) \sim \alpha_s/Q^2$
- The probability that a given gluon interacts with all other gluons with the same (x, Q^2) :

$$
\Gamma(x, Q^2) \simeq \frac{\alpha_s(Q^2)}{Q^2} \frac{xG(x, Q^2)}{\pi R^2}
$$

i) $O(\alpha_s)$, but amplified by $xG(x, Q^2) \sim x^{-\omega}$.

ii) Suppressed by $1/Q^2$: "higher twist".

• $\Gamma(x, Q^2) \sim 1$ for $Q^2 \sim Q_s^2(x)$ such that :

$$
Q_s^2(x) \simeq \alpha_s \frac{xG(x, Q_s^2(x))}{\pi R^2} \sim x^{-\lambda}
$$

 $Q_s(x) \gg \Lambda_{\rm QCD}$ provided x is small enough ! \Rightarrow A hard intrinsic scale which may suppress infrared diffusion and ensure weak coupling :

$$
\alpha_s(Q_s^2(x)) \ll 1 \quad \text{for} \quad x \ll 1
$$

• $Q_s(x) =$ "saturation momentum"

— For $k_{\perp} \leq Q_s(x)$: strong non–linear effects which should saturate the gluon occupation number:

$$
n_g \equiv \frac{(2\pi)^3}{2 \cdot (N_c^2 - 1)} \frac{\mathrm{d}N}{\mathrm{d}Y \mathrm{d}^2 \mathbf{k} \,\mathrm{d}^2 \mathbf{b}} \sim \frac{1}{\alpha_s}
$$

— For $k_{\perp} \gg Q_s(x)$: usual linear evolution. $n_g \ll 1$, but rapidly increasing with $1/x$ and $1/k_{\perp}$ With decreasing x, gluons are produced mostly at large momenta $k_{\perp} > Q_s(x)$, and thus cannot be "seen" by a probe (γ^*) with $Q^2 < Q_s(x)$ \implies unitarization of DIS!

- Gluon saturation is a natural solution to the small– x problems of the linear evolution equations.
- How to compute in this non-linear regime? Large occupation numbers \longleftrightarrow Strong $(A \sim 1/g)$ classical fields. (cf. Introduction)

Classical effective theory for the small– x gluons

A cartoon of DIS in the presence of non–linear effects

- Non-linearities manifest themselves is:
	- the gluon distribution, and its evolution with $1/x$
	- the production of the last quark
- Strategy :

1) 'Factorize out' the quark production and its subsequent interaction with γ^* (specific to DIS) "Dipole Picture" + "Eikonal Approximation" A. Mueller; Nikolaev, Zakharov; Kovchegov Buchmüller, Hebecker; Balitsky 2) Construct an effective theory for gluon correlations in the hadron wavefunction at small– x "Color Glass Condensate" McLerran, Venugopalan: "MV model" (classical model for a large nucleus $A \gg 1$) E.I., Jalilian-Marian, Kovner, Leonidov, McLerran,

Weigert: QCD at small x

B. Light–cone kinematics & quantization

- A fast moving particle in the positive z direction: $p_z \gg m$, $v \simeq c$: $z = t$, $x, y = \text{const.}$
- Light–cone coordinates:

$$
x^+ \equiv \frac{1}{\sqrt{2}}(t+z), \quad x^- \equiv \frac{1}{\sqrt{2}}(t-z), \quad x_\perp = (x, y)
$$

- "Particle at rest at $x^- = 0$ with 'time' x^{+} "
- For a particle moving in the negative z direction $(z = -t)$, the roles of x^{+} and x^{-} get interchanged.

\n- 4-vector:
$$
x^{\mu} = (x^+, x^-, x_\perp)
$$
 Measure: $d^4x = dx^+dx^-d^2x_\perp$ Metric: $k \cdot x = k^-x^+ + k^+x^- - k_\perp \cdot x_\perp$ k^- : "LC energy"; k^+ : "LC longitudinal momentum"
\n

on – shell excitation : $k^2 = m^2 \implies k^- = \frac{m^2 + k_{\perp}^2}{2k^+}$ ⊥ $2k⁺$

Proton's IMF: $P_z \equiv P \gg M \Longrightarrow P^{\mu} \simeq \delta^{\mu+} P^+$ $P^+ \simeq \sqrt{2}P, P^- = M^2/2P^+ \ll P^+$

• Boost–invariant longitudinal momentum fraction:

$$
x \equiv \frac{k^+}{P^+} \quad \left(\longrightarrow \frac{k_z}{P_z} \quad \text{in IMF} \right)
$$

and rapidity: $Y = \ln(1/x) = \ln(P^{+}/k^{+})$

Gluon Distribution

$$
xG(x,Q^2) \equiv \int^{Q^2} d^2k \frac{dN}{dYd^2k}
$$

- LC quantization of the SU(3) gauge fields LC gauge: $A_a^+ = 0 \; (\longleftrightarrow \text{temporal gauge } A_a^0 = 0)$
- Fock–space gluon number density:

$$
\frac{\mathrm{d}N}{\mathrm{d}^3k} \equiv \frac{\mathrm{d}N}{\mathrm{d}k + \mathrm{d}^2\mathbf{k}} = \sum_{\lambda,c} \langle a_{\lambda,c}^\dagger(\vec{k}) a_{\lambda,c}(\vec{k}) \rangle \qquad [\vec{k} \equiv (k^+, \mathbf{k})]
$$

• One finds (with $F_a^{+i}(x) = \partial^+ A_a^i(x)$ in LC gauge) :

$$
\frac{\mathrm{d}N}{\mathrm{d}Y\mathrm{d}^2\bm{k}} = \frac{1}{4\pi^3} \langle F_a^{+i}(x^+, \vec{k}) F_a^{+i}(x^+, -\vec{k}) \rangle
$$

where $\langle \cdots \rangle$: average over hadron wavefunction.

- This is a gauge–invariant quantity, but coincides with the Fock–space gluon number only in LC gauge.
- In some arbitrary gauge, the r.h.s. is replaced by $\langle \mathcal{O}_{\gamma} \rangle$, with the gauge–invariant operator:

$$
\mathcal{O}_{\gamma}(\vec{x}, \vec{y}) \equiv \text{Tr} \{ F^{i+}(\vec{x}) \, U_{\gamma}(\vec{x}, \vec{y}) \, F^{i+}(\vec{y}) \, U_{\gamma}(\vec{y}, \vec{x}) \}
$$

where $\vec{x} = (x^{-}, x)$ and the Wilson line:

$$
U_{\gamma}(\vec{x}, \vec{y}) = P \exp \left\{ ig \int_{\gamma} d\vec{z} \cdot \vec{A}_a(\vec{z}) T^a \right\}
$$

The path γ used for the evaluation of the gauge-invariant operator \mathcal{O}_{γ} .

• Gauge transformations: $h(x) \in \text{SU}(3)$, $hh^{\dagger} = 1$

 $A^{\mu}(x) \equiv A^{\mu}_{a}(x)T^{a} \longrightarrow h(x)A^{\mu}(x)h^{\dagger}(x) + \frac{i}{a}$ \overline{g} $h(x)\partial^{\mu}h^{\dagger}(x)$ $U_{\gamma}(x,y) \longrightarrow h(x) U_{\gamma}(x,y) h^{\dagger}(y)$

C. DIS in the Dipole Frame

- How to compute F_2 in the presence of "higher–twist" effects ?
- The struck quark: the last emitted parton in an otherwise purely gluonic cascade
- It is convenient/possible to disentangle this last quark from the gluon evolution via a Lorentz boost : Give γ^* enough energy to fluctuate into a $q\bar{q}$ pair long time before the collision:

$$
|\gamma^*\rangle = c_0|\gamma\rangle_0 + c_1|q\bar{q}\rangle_0 + \cdots \qquad (c_1 \sim \alpha_{em})
$$

 $|q\bar{q}\rangle_0$: "Color Dipole" (color single state);

• To $O(\alpha_{\rm em})$, DIS is determined by the dipole scattering off the color fields in the hadron.

• Dipole frame :

 $P^{\mu} \simeq (P, 0_{\perp}, P)$ & $q^{\mu} = (\sqrt{q^2 - Q^2}, 0_{\perp}, -q)$ with $q \gg Q$ but such that $\alpha_s \ln(q/Q) \ll 1$ i) The $q\bar{q}$ fluctuation has a long lifetime: $\tau_{q\bar{q}}\,\sim\,\left(E_{q\bar{q}}-E_{\gamma^*}\right)^{-1}\,\,\gg\,\,\tau_{\text{DIS}}\,\sim\,R/\gamma\,\sim\,1/P$ \implies the dipole transverse size $r = x - y$ is frozen (unchanged by the dipole–hadron interaction). ii) No gluon (QCD evolution) in the $q\bar{q}$ wavefunction. Most of the total energy, and all the evolution, are still carried by the proton ! $\alpha_s \ln(1/x) \simeq \alpha_s \ln(P/Q) > 1$

• Small–x DIS in the Dipole Frame: Dissociation of γ^* into a $q\bar{q}$ pair followed (long time after) by the interaction between a bare color dipole and a highly evolved hadron.

$$
\sigma_{\gamma^*p}(x,Q^2) = \sigma_T + \sigma_L
$$

 $\sigma_{T,L}(x,Q^2) = \int^1$ 0 $dz \!\int\! d^2\bm{r} \left| \Psi_{T,L}(z,\bm{r};Q^2) \right|$ \vert 2 $\sigma_{\rm dipole} (x, \bm{r})$

- $|\Psi|^2 \sim O(\alpha_{\rm em})$: LC wavefunction for the dissociation of γ^* into a $q\bar{q}$ pair of size r and a longitudinal fraction of the quark equal to z
- All the QCD dynamics is encoded in σ_{dipole} .

• How to compute σ_{dipole} ? P r b $b = (x+y)/2$ $r = x-y$ $\gamma *$ y x

• Eikonal approximation: Relative motion is very fast $(s \sim qP \gg k_{\perp}^2)$ — straightline trajectories $(x_{\perp}, y_{\perp} = \text{fixed})$ — coupling to A_a^+ alone: $j_q^{\mu} A_{\mu} \propto A^+$ (since q and \bar{q}) propagate in the negative z direction: $j_q^{\mu} \propto \delta^{\mu-}$) (Use a gauge <u>different</u> from LC gauge $A^+ = 0$!)

$$
\sigma_{\rm dipole}(x,\bm{r})\,=\,2\int{\rm d}^2\bm{b}\,\Big(1-{\rm Re}\,S(x,\bm{r},\bm{b})\Big)
$$

 $S(x, r, b)$: S-matrix at impact parameter **b**. $|S| \leq 1$ (unitarity bound, from $SS^\dagger = 1)$ $S \approx 1$: weak scattering (transparency); $S \ll 1$: complet absorbtion (blackness)

• The S-matrix in the eikonal approximation: i) Single quark in the background of the field A_a^+ :

$$
S_q(\boldsymbol{x}) \,=\, \mathrm{P}\,\exp\Big\{\,ig\int\mathrm{d} x^- A^+_a(x^-,\boldsymbol{x})t^a\Big\} \ \equiv\, V^\dagger(\boldsymbol{x})
$$

ii) Color dipole in the fluctuating field of a hadron:

$$
S_Y(\boldsymbol{x}, \boldsymbol{y}) \ = \ \frac{1}{N_c} \left\langle \text{tr} \, V^\dagger(\boldsymbol{x}) \, V(\boldsymbol{y}) \right\rangle_Y \ \equiv \ S_Y(\boldsymbol{r}, \boldsymbol{b})
$$

- Schematically : $S = \langle \phi_f | \phi_i \rangle = \langle \phi_i | U(\infty, -\infty) | \phi_i \rangle$ $U(\infty, -\infty) = T \exp \left\{ i \int dt \int d^3x \mathcal{L}_{int}(t, \vec{x}) \right\}$ Here: "time" = x^{-} , $\vec{x} = (x^{+}, b)$, $\mathcal{L}_{int} = j_a^{\mu} A_{\mu}^{a}$ with $j_a^{\mu} = gt^a \delta^{\mu -} \delta(x^+) \delta(\boldsymbol{b} - \boldsymbol{x})$
- $(1/N_c)$ tr : average over color for the $q\bar{q}$ pair
- $V, V^{\dagger} \in SU(3)$: "Wilson lines" Color precession of the quark (or antiquark) after crossing the field.
- *V*, V^{\dagger} : All orders in $gA^{+} \Longrightarrow$ Multiple scattering
- Weak fields $(gA^+ \ll 1) \Longrightarrow$ Perturbative expansion Appropriate at not so high densities (not so small x).
- Lowest order in α_s : Single–scattering approximation

$$
S_Y(\boldsymbol{x},\boldsymbol{y})~\approx~1-\frac{g^2}{4N_c}\Big\langle\Big(A^+_a(\boldsymbol{x})-A^+_a(\boldsymbol{y})\Big)^2\Big\rangle_Y
$$

 $\langle A^+A^+ \rangle \propto$ gluon distribution.

Exercice i) Show that to $O(\alpha_s)$:

$$
\sigma_{\text{dipole}}(x, r) \approx \frac{4\pi}{N_c} \alpha_s \int \frac{\mathrm{d}^2 \mathbf{k}}{\mathbf{k}^4} f(x, \mathbf{k}^2) \left(1 - e^{i\mathbf{k} \cdot \mathbf{r}}\right)
$$

ii) If $f(x, k^2)$ is slowly varying in k^2 , show that:

$$
\sigma_{\rm dipole}(x,\bm{r})\,\approx\,\frac{\pi^2}{N_c}\,\alpha_s\bm{r}^2\,xG(x,1/\bm{r}^2)
$$

- The weak field/coupling expansion to a given order violates the unitarity bound.
- When $gA^+ \sim 1$, any number of collisions is important, and unitarity should be restored.
- When $gA^+ \sim 1$, non–linear effects in the gluon distribution become important too.

Unitarization of dipole scattering

& Saturation of the gluon distribution:

Two aspects of the same non–linear physics !

 $\sigma_{\text{dipole}}(x, r) \sim \pi R^2 \text{ when } r \sim 1/Q_s(x)$