
C. BFKL Evolution & The Small–x Problem

• Resum all terms
(
αs ln 1

x

)n, n ≥ 1, in xG(x, Q2),
even if non–accompanied by powers of lnQ2.

• Local in x, but non–local in k⊥

• Exponential increase with Y ≡ ln(1/x) (“rapidity”)

Y ≡ ln 1
x ∼ ln s

Q2 dY = dx
x $ dkzdbz

xG(x, Q2) ≡ dN

dY
(x, Q2) =

∫ Q2

d2k⊥
dN

dY d2k⊥

= # of gluons per unit rapidity and localized
within a transverse size ∆x⊥ ∼ 1/Q.

N(Y ): # of gluons produced after a rapidity evolution Y
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A more physical argument

• Gluons in the BFKL cascade are coherent in time.

The lifetimes of the virtual gluons are strongly
ordered along the cascade: ∆ti ∼ 2 xi P

k2
i⊥

∆t1 & ∆t1 & . . . ∆tn & ∆t

• All the gluons with x′ & x are frozen over the
natural time scale ∆t for dynamics at x.

• The last gluon is emitted coherently off the global
color charge of the previously emitted N(Y ) gluons

• Random distribution of ‘fast’ (x′ & x) gluons

←→ Random color charge Qa =
∑

i Qa
i

〈Qa〉 = 0, 〈Q2〉Y ≡
〈( N∑

i=1

Qa
i

)2〉

Y
∼ g2Nc N(Y )

Indeed: for one gluon (gT a)(gT a) = g2Nc

The color charges of the N(Y ) gluons sum up
incoherently.

• Assumption: After being emitted, gluons do not
interact with each other.



• Probability for emitting a new gluon when
Y → Y + dY :

dP (Y ) ∝ g2Nc N(Y )dY ≡ ωαsN(Y )dY

• The average # of gluons at rapidity Y + dY :

N(Y + dY ) =
[
1 + N(Y )

]
dP (Y ) + N(Y )

[
1 − dP (Y )

]

=⇒ dN

dY
=

dP

dY
= ωαsN(Y ) =⇒ N(Y ) ∝ eωαsY

• Unstable growth of the gluon distribution !

The radiated gluons act as sources for the emission
of new gluons.

• BFKL equation provides the value of ω :
ω = 4 ln 2(Nc/π) ≈ 2.65

together with the k⊥–spectrum of the emitted gluons.

=⇒ The first problem of BFKL evolution at small–x :

Too rapid rise of total cross–sections with 1/x (or s)

• 1) Unacceptable phenomenology

• 2) Conceptual difficulties



1) Phenomenological difficulties of BFKL

• How to compute F2 when αs ln 1
x > lnQ2 ?

Collinear factorization does not apply beyond DLA.

New factorization schemes will be introduced later:

i) k⊥–factorization ; ii) dipole picture

• In any case, at small–x, F2 is driven by the gluon
distribution, so BFKL generically implies :

F2(x.Q2) ∝ 1/xωαs with ωαs $ 0.5 for αs = 0.2

• The data do rise indeed, but much slower !

Parametrization : F2(x, Q2) ∼ x−λeff (Q
2), x < 0.01

HERA data: λeff(Q2) falls from 0.35 to 0.1 when

Q2 falls from 200 GeV2 to 1 GeV2.

• Similar conclusions from other high energy
experiments (γ∗γ∗ scattering at L3, OPAL):

The “BFKL intercept” αP − 1 ≡ ωαs is far too large!

• Next–to–leading order (NLO) corrections to BFKL
could reduce αP significantly.

• NLO BFKL become available recently:

(Fadin, Lipatov (98); Ciafaloni, Camici (98))

and turned out to be larger then the leading–order !

ωNLO = ωLO

(
1− 6.47ᾱs) = − 0.16 for αs = 0.2



• Resummations of higher–order effects have been
proposed to cure this lack–of–convergence problem :

Salam, 98; Ciafaloni, Colferai, 99;

Brodsky, Fadin, Kim, Lipatov, Pivovarov, 99;

Schmidt, 99; Forshaw, Ross, Sabio–Vera, 99

• E.g.: The collinear resummation by Salam,
Ciafaloni, and Colferai =⇒ sensible results for ωNLO:
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• Applications of NLO BFKL to phenomenology.

Currently, a very active, and promising, field:

— γ∗γ∗ scattering: encouraging results

— DIS: recent progress, but some problems remain
to be solved [Bartels, Colferai, Gieseke, Kyrieleis, Qiao]



Figure 1: H1 and ZEUS data on the F2 structure function
shown in three bins of Q2 as a function of x. The steep
rise of the structure function at low x is clearly apparent.

From the review paper “Lectures on HERA physics”, by B. Foster,

EPJdirect A1, 1–11 (2003); hep-ex/0206011.
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Figure 2: The coefficients c(Q2) and λ(Q2) from fits of
the form F2(x, Q2) = c(Q2)x−λ(Q2) for x < 0.01

H1prelim-02-041, T. Lastovicka, talk presented at DIS 2002, April

2002 & H1 contribution to EPS2003, Aachen, July 2003
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Figure 3: L3 results for the two–photon cross–section
σγ∗γ∗ showing a strong deviation from LO BFKL. The
continuous line is a BFKL–like fit with αP − 1 left as a
free parameter. One finds: αP − 1 ≈ 0.28 for

√
s = 91

GeV and αP − 1 ≈ 0.40 for
√

s = 183 GeV.

From the review paper by Donnachie, J. Phys. G26: 689-695, 2000

hep-ph/0001035



Figure 4: Virtual gamma-gamma total cross section by the
NLO BFKL Pomeron vs L3 Collaboration data at energy
183 GeV of e+e− collisions. Solid curves: NLO BFKL.
Dashed: LO BFKL. Dotted: LO contribution. Two dif-
ferent curves are for two different choices of the Regge
scale: s0 = Q2/2, s0 = 2Q2

From Kim, Lipatov, Pivovarov, hep-ph/9911228, presented to the

VIIIth Blois Workshop, 1999



2) Unitarity violation by BFKL evolution

σγ∗p(x, Q2) =
4π2αem

Q2
F2(x, Q2) ∝ 1

xωαs
∼ sωαs

• But hadronic crosss-sections cannot grow like a
power of s in the high–energy limit s → ∞ !

• (A) Froissart bound: σtot(s) ≤ σ0 ln2 s as s → ∞.
Consequence of very general principles (unitarity,
analitycity, crossing) + short–rangeness (mass gap)
In QCD one expects: σ0 ∝ 1/m2

π.

• DIS: γ∗ is a virtual state, not a hadron !
Still: γ∗ is a superposition of hadronic states

=⇒ σγ∗p(x, Q2) ≤ σ0 ln3 1
x

as x → 0

• Clearly, BFKL (LO or NLO) violates this condition.

• (B) Unitarity bound on the S–matrix : SS† = 1
=⇒ |S(x, b)| ≤ 1 for any impact parameter b.
This condition too is violated by BFKL (see below).

• Is this a problem of the BFKL evolution of
xG(x, Q2), or of the calculation of F2, or both?
One expects multiple scattering to restore unitarity
in the S–matrix.
One may imagine that F2 unitarizes, while
xG(x, Q2) keeps growing as a power of 1/x.



The BFKL equation

• The unintegrated gluon distribution (with k ≡ k⊥) :

xG(x, Q2) ≡
∫ Q2

dk2

k2
f(x, k2), f(x, k2) =

∂ xG(x, k2)
∂ lnk2

• BFKL equation (Y = ln(1/x) and ᾱs = αsNc/π)

∂f(Y, k2)
∂Y

= ᾱs

∫
d2p

π

k2

p2(k − p)2

{
f(Y, p2)︸ ︷︷ ︸

real

− 1
2
f(Y, k2)

︸ ︷︷ ︸
virtual

}

• “Real” : real gluon emission in one–step evolution

• “Virtual” : vertex and self-energy corrections

• The virtual term compensates the “infrared’
divergence of the real term at k = p.

• DLA limit comes out as expected: for k2 & p2

∂f(Y, k2)
∂Y

≈ ᾱs

∫ k2
dp2

p2
f(Y, p2)



The Gluon distribution of one quark

• Recall: gluon radiation by a fast quark
(‘bremsstrahlung’)

kµ

p =(p, 0µ ,p)

(p-k) µ (1-z)p )

=(zp, k ,

= ( ,- k(1-z)p ,

zp)

dP =
αsCF

2π
dk2

k2

1 + (1 − x)2

x
dx

where CF ≡ tata = (N2
c − 1)/Nc = 4/3

• One can identify this with the spectrum of the
emitted gluons :

dN

dxdk2
≡ dP

dxdk2
$ αsCF

π

1
k2

1
x

for x 1 1

• Hence, the integrated gluon distribution generated
by a single quark :

fq(x, k2) ≡ ∂ xG(x, k2)
∂ lnk2

= k2 x
dN

dxdk2
=

αsCF

π

• The (integrated) gluon distribution of one quark:

xGq(x, Q2) =
∫ Q2

dk2

k2

αsCF

π
=

αsCF

π
ln

Q2

Λ2

Λ = infrared cutoff

• The simplest “proton” : xGp(x, Q2) $ 3 xGq(x, Q2)



• The solution to BFKL equation for αsY & lnk2

f(Y, k2) ∝
(

k2

k2
0

)1/2

eωᾱsY exp
{
−

ln2 (
k2/k2

0

)

2βᾱsY

}

where: ω = 4 ln 2 ≈ 2.77, β ≈ 33.67.

• Exponential rise with Y .

• BFKL “anomalous dimension 1/2”: f ∝
√

k2

In LO perturbation th., f is independent of k.

DGLAP evolution: f is a function of lnk2.

BFKL: strong violation of Bjorken scaling: F2 ∝
√

Q2

• Diffusive behaviour in the variable lnk2 with
diffusion “time” Y .

The evolution broadens the lnk2–distribution of f .

=⇒ New problem of BFKL evolution at small–x :

“Infrared diffusion” towards non–perturbative momenta

Even if the external momentum k is hard (& Λ2
QCD),

the non-locality of the evolution makes it that, with

increasing Y , f(Y, k2) receives an increasingly large

contribution from non–perturbative p.

• Problems with the introduction of the running
coupling αs(k2)

• In practice: use an infrared cutoff k2
c
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Figure 5: The functions kφ(k, Y ) constructed from solu-
tions to the BFKL and the Balitsky-Kovchegov equations
for different values of the evolution parameter Y = ln(1/x)
ranging from 1 to 10. The coupling constant αs = 0.2.

kφ(k, Y ) ←→ f(Y, k)/k; kφ(k, Y0 = 0) = δ
(
ln k2/k2

0

)

From K. Golec-Biernat, L. Motyka, A. M. Stasto, Phys Rev D65

(2002) 074037; hep-ph/0110325



III. Unitarity vs. Saturation in DIS

A. The idea of saturation
Gribov, Levin and Ryskin, 83; Mueller and Qiu, 86

• So far, the emitted gluons were assumed not to
interact with each other

• Gluons within the same BFKL cascade are well
separated in rapidity, so they cannot interact

• Gluons with similar rapidities but from different
cascades interact with a cross–section ∼ αs

• At small–x, the gluon density is large, which
enhances gluon recombination

When RECOMBINATION = RADIATION =⇒ SATURATION

• What is the recombination probability ?

• In order to interact, the small–x gluons must overlap
in transverse projection.

Indeed, since λz ∼ 1
xP & 1

P , their longitudinal
overlap is then automatic.

xG(x, Q2)/πR2 = # of gluons (x, Q2) per unit area.



• A typical gg cross-section: σgg(Q2) ∼ αs/Q2

• The probability that a given gluon interacts with all
other gluons with the same (x, Q2) :

Γ(x, Q2) $ αs(Q2)
Q2

xG(x, Q2)
πR2

i) O(αs), but amplified by xG(x, Q2) ∼ x−ω.

ii) Suppressed by 1/Q2 : “higher twist”.

• Γ(x, Q2) ∼ 1 for Q2 ∼ Q2
s(x) such that :

Q2
s(x) $ αs

xG(x, Q2
s(x))

πR2
∼ x−λ

Qs(x) & ΛQCD provided x is small enough !

=⇒ A hard intrinsic scale which may suppress
infrared diffusion and ensure weak coupling :

αs

(
Q2

s(x)
)
1 1 for x 1 1

• Qs(x) = “saturation momentum”

— For k⊥ ≤ Qs(x) : strong non–linear effects which
should saturate the gluon occupation number:

ng ≡ (2π)3

2 · (N2
c − 1)

dN

dY d2k d2b
∼ 1

αs

— For k⊥ & Qs(x) : usual linear evolution.

ng 1 1, but rapidly increasing with 1/x and 1/k⊥



With decreasing x, gluons are produced mostly at
large momenta k⊥ > Qs(x), and thus cannot be
“seen” by a probe (γ∗) with Q2 < Qs(x)

=⇒ unitarization of DIS!

kY1

Y1

Y2

Y2

k2

 QCD 

1

s

ng

Q s(  sQ ( ))

Y> 1

f(Y,k)

• Gluon saturation is a natural solution to the small–x
problems of the linear evolution equations.

• How to compute in this non–linear regime ?

Large occupation numbers ←→ Strong (A ∼ 1/g)
classical fields. (cf. Introduction)

Classical effective theory for the small–x gluons



A cartoon of DIS in the presence of non–linear effects

P

 

• Non–linearities manifest themselves is:
— the gluon distribution, and its evolution with 1/x

— the production of the last quark

• Strategy :
1) ‘Factorize out’ the quark production and its
subsequent interaction with γ∗ (specific to DIS)
“Dipole Picture” + “Eikonal Approximation”
A. Mueller; Nikolaev, Zakharov; Kovchegov
Buchmüller, Hebecker; Balitsky
2) Construct an effective theory for gluon
correlations in the hadron wavefunction at small–x
“Color Glass Condensate”
McLerran, Venugopalan: “MV model” (classical
model for a large nucleus A & 1)
E.I., Jalilian-Marian, Kovner, Leonidov, McLerran,
Weigert: QCD at small x



B. Light–cone kinematics & quantization

• A fast moving particle in the positive z direction:
pz & m, v $ c : z = t, x, y = const.

• Light–cone coordinates:

x+ ≡ 1√
2
(t + z), x− ≡ 1√

2
(t − z), x⊥ = (x, y)

• “Particle at rest at x− = 0 with ‘time’ x+”

• For a particle moving in the negative z direction
(z = −t), the roles of x+ and x− get interchanged.

• 4–vector: xµ = (x+, x−, x⊥)

Measure: d4x = dx+dx−d2x⊥

Metric: k · x = k−x+ + k+x− − k⊥ · x⊥

k−: “LC energy”; k+: “LC longitudinal momentum”

on − shell excitation : k2 = m2 =⇒ k− =
m2 + k2

⊥
2k+

Proton’s IMF: Pz ≡ P & M =⇒ Pµ $ δµ+P+

P+ $
√

2P , P− = M2/2P+ 1 P+

• Boost–invariant longitudinal momentum fraction:

x ≡ k+

P+

(
−→ kz

Pz
in IMF

)

and rapidity: Y = ln(1/x) = ln(P+/k+)



Gluon Distribution

xG(x, Q2) ≡
∫ Q2

d2k
dN

dY d2k

• LC quantization of the SU(3) gauge fields

LC gauge: A+
a = 0 (←→ temporal gauge A0

a = 0)

• Fock–space gluon number density:

dN

d3k
≡ dN

dk+d2k
=

∑

λ,c

〈
a†

λ,c(+k)aλ,c(+k)
〉

[+k ≡ (k+, k)]

• One finds (with F+i
a (x) = ∂+Ai

a(x) in LC gauge) :

dN

dY d2k
=

1
4π3

〈
F+i

a (x+,+k)F+i
a (x+,−+k)

〉

where 〈· · · 〉 : average over hadron wavefunction.

• This is a gauge–invariant quantity, but coincides
with the Fock–space gluon number only in LC gauge.

• In some arbitrary gauge, the r.h.s. is replaced by
〈Oγ〉, with the gauge–invariant operator:

Oγ(+x, +y) ≡ Tr
{
F i+(+x) Uγ(+x, +y) F i+(+y) Uγ(+y, +x)

}

where +x = (x−, x) and the Wilson line:

Uγ(+x, +y) = P exp
{

ig

∫

γ
d+z · +Aa(+z)T a

}
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The path γ used for the evaluation of the
gauge-invariant operator Oγ .

• Gauge transformations: h(x) ∈ SU(3), hh† = 1

Aµ(x) ≡ Aµ
a(x)T a −→ h(x)Aµ(x)h†(x) +

i

g
h(x)∂µh†(x)

Uγ(x, y) −→ h(x) Uγ(x, y) h†(y)



C. DIS in the Dipole Frame

• How to compute F2 in the presence of
“higher–twist” effects ?

• The struck quark: the last emitted parton in an
otherwise purely gluonic cascade

• It is convenient/possible to disentangle this last
quark from the gluon evolution via a Lorentz boost :

Give γ∗ enough energy to fluctuate into a qq̄ pair
long time before the collision:

 

.

boost

 

|γ∗〉 = c0|γ〉0 + c1|qq̄〉0 + · · · (c1 ∼ αem)

|qq̄〉0 : “Color Dipole” (color single state);

• To O(αem), DIS is determined by the dipole
scattering off the color fields in the hadron.



• Dipole frame :

Pµ $ (P, 0⊥, P ) & qµ = (
√

q2 − Q2, 0⊥,−q)

with q & Q but such that αs ln(q/Q) 1 1

i) The qq̄ fluctuation has a long lifetime:

τqq̄ ∼
(
Eqq̄ − Eγ∗

)−1 & τDIS ∼ R/γ ∼ 1/P

=⇒ the dipole transverse size r = x − y is frozen
(unchanged by the dipole–hadron interaction).

ii) No gluon (QCD evolution) in the qq̄ wavefunction.

Most of the total energy, and all the evolution, are
still carried by the proton !
αs ln(1/x) $ αs ln(P/Q) > 1

• Small–x DIS in the Dipole Frame :

Dissociation of γ∗ into a qq̄ pair followed (long time
after) by the interaction between a bare color dipole
and a highly evolved hadron.

σγ∗p(x, Q2) = σT + σL

σT,L(x, Q2) =
∫ 1

0
dz

∫
d2r

∣∣ΨT,L(z, r; Q2)
∣∣2 σdipole(x, r)

• |Ψ|2 ∼ O(αem) : LC wavefunction for the
dissociation of γ∗ into a qq̄ pair of size r and a
longitudinal fraction of the quark equal to z

• All the QCD dynamics is encoded in σdipole.



• How to compute σdipole ?

P

r

b (x+y)/2b = 
r = x-y

 

y
x

• Eikonal approximation:

Relative motion is very fast (s ∼ qP & k2
⊥)

— straightline trajectories (x⊥, y⊥ = fixed)

— coupling to A+
a alone: jµ

q Aµ ∝ A+ (since q and q̄

propagate in the negative z direction: jµ
q ∝ δµ−)

(Use a gauge different from LC gauge A+ = 0 !)

σdipole(x, r) = 2
∫

d2b
(
1 − ReS(x, r, b)

)

S(x, r, b) : S–matrix at impact parameter b.

|S| ≤ 1 (unitarity bound, from SS† = 1)

S ≈ 1 : weak scattering (transparency);

S 1 1 : complet absorbtion (blackness)



• The S–matrix in the eikonal approximation:
i) Single quark in the background of the field A+

a :

Sq(x) = P exp
{

ig

∫
dx−A+

a (x−, x)ta
}

≡ V †(x)

+A +A

x-

ii) Color dipole in the fluctuating field of a hadron:

SY (x, y) =
1

Nc

〈
trV †(x) V (y)

〉

Y
≡ SY (r, b)

• Schematically : S = 〈φf |φi〉 = 〈φi|U(∞,−∞)|φi〉

U(∞,−∞) = T exp
{

i
∫

dt
∫

d3xLint(t, +x)
}

Here: “time” = x−, +x = (x+, b),

Lint = jµ
a Aa

µ with jµ
a = gtaδµ−δ(x+)δ(b − x)

• (1/Nc) tr : average over color for the qq̄ pair

• V, V † ∈ SU(3) : “Wilson lines”
Color precession of the quark (or antiquark) after
crossing the field.

• V, V † : All orders in gA+ =⇒ Multiple scattering



• Weak fields (gA+ 1 1) =⇒ Perturbative expansion
Appropriate at not so high densities (not so small x).

• Lowest order in αs : Single–scattering approximation

SY (x, y) ≈ 1 − g2

4Nc

〈(
A+

a (x) − A+
a (y)

)2〉

Y

〈A+A+〉 ∝ gluon distribution.

Exercice i) Show that to O(αs) :

σdipole(x, r) ≈ 4π
Nc

αs

∫
d2k

k4
f(x, k2)

(
1 − eik·r

)

ii) If f(x, k2) is slowly varying in k2, show that:

σdipole(x, r) ≈ π2

Nc
αsr

2 xG(x, 1/r2)

• The weak field/coupling expansion to a given order
violates the unitarity bound.

• When gA+ ∼ 1, any number of collisions is
important, and unitarity should be restored.

• When gA+ ∼ 1, non–linear effects in the gluon
distribution become important too.

Unitarization of dipole scattering
& Saturation of the gluon distribution:
Two aspects of the same non–linear physics !

σdipole(x, r) ∼ πR2 when r ∼ 1/Qs(x)


