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QCD AT HIGH ENERGIES

• What is the high energy limit of scattering in QCD ?

• What is a high energy hadron made of ?

• To which extent can this be described in
perturbation theory ?

• A new regime of QCD: weak coupling & high density

• Color Glass Condensate
— The form of hadronic matter which controls

high–energy interactions
— An effective theory for the small–x part of the

wavefunction of an energetic hadron
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I. High–Density QCD

• A medium described by QCD

A dense system of quarks and gluons which exists
over time scales much larger than the time scale we
need to probe it.

— Quark–Gluon Plasma

(Early Universe, Heavy Ion collisions)

— Color Glass Condensate (High energy scattering)

— Color Superconductors (Core of neutron stars)

• Weak coupling but many degrees of freedom

=⇒ Breakdown of ordinary perturbation theory

• When do non–linear effects become important ?

Dν = ∂ν − igAν

∂ν ∼ gAν when Ā ∼ k̄/g

=⇒ Strong–field regime of QCD

Since Aν is a fluctuating field, this condition should
be understood in the sense of correlations.



• E.g.: Energy density ∼ 〈trF 2
µν〉

Since: F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µAc
ν ,

non-linear effects become important when:
〈(
∂ · A

)2〉 ∼ g2
〈
A4

〉
, that is: k̄2

〈
A2

〉
∼ g2

〈
A2

〉2

g2
〈
A2

〉
∼ k̄2

As we shall see:

• This happens for momenta k smaller than some
intrinsic scale, characteristic of the density and of
the interactions in the system.

• When this happens, gluon occupation numbers are
large (∼ 1/g2), and a semi–classical description
becomes possible.

Strong-field QCD −→ Classical effective theory



A. High–Temperature QCD

• T > Tc ∼ 170 MeV =⇒ Quark–Gluon Plasma

• Thermal occupation number for gluons :

1
V

dN

d3k
= n(εk) =

1
eβεk − 1

(β = 1/T, εk = !k)

Since: dN
dk ∼ k2

eβ!k−1 =⇒ Most gluons have k ∼ T

When k ∼ T =⇒ n(k) ∼ 1

But soft modes have large occupation numbers:

k ' T =⇒ n(k) ( T
!k ) 1

N.B. The same as the classical limit (! → 0).

• Average energy per soft mode:

εk n(εk) ( T for k ' T =⇒ classical ‘equipartition’

Soft modes are quasi–classical !

• What is the typical strength of thermal fluctuations?

Ā ≡
√

< A2(t, x) > ; < A2 >∼
∫

d3k

(2π)3
n(εk)
εk

• Focus on fluctuations with size ∼ 1/k̄ [! = 1] :

〈A2〉k̄ ∼
∫ k̄ d3k

(2π)3
1
k

1
eβk − 1



• If k̄ ∼ T =⇒ 〈A2〉T ∼ T 2

=⇒ g2〈A2〉T ∼ g2T 2 ' k̄2 ∼ T 2

Typical (k ∼ T ) fluctuations are perturbative.

• If k̄ ' T =⇒ 〈A2〉k̄ ∼
∫ k̄ d3k

k
T
k ∼ k̄ T

g2〈A2〉k̄ ∼ k̄2 provided k̄ ∼ g2T

Fluctuations with k <∼ g2T are non–perturbative !

• Physical interpretation :
Generation of a “gluon (screening) mass” ms ∼ g2T .

• For k ≤ ms : εk →
√

k2 + m2
s ( ms

The occupation numbers “saturate” to n ( 1/αs :

n(k) ( T

ms
∼ 1

αs
) 1

• How to calculate in this non–perturbative regime ?

a) Construct a classical effective theory for the soft
modes (k ∼ g2T ) by integrating out the relatively
hard modes (k ∼ T and gT ) in perturbation th.

b) Solve the classical eff. th. on a 3–dim. lattice

• References :
F.Karsch, E.Laermann, hep-lat/0305025 (lattice)
U. Kraemmer, A. Rebhan, hep-ph/0310337
J.-P. Blaizot, E. Iancu, Phys. Rept. 359 (2002) 355



B. High–Energy QCD

• The “small–x” part of the wavefunction of a fast
moving (v ( c) hadron

• High density of virtual partonic excitations (mostly
gluons) which are “frozen” by Lorentz time dilation.

• Gluon occupation number :

ng =
(2π)3

2 · (N2
c − 1)

dNg

d3k d3b

(# of gluons of given spin and color per unit phase–space)

• ng is not a priori known (unlike in the high–T case).
But the gluon field fluctuations 〈A2〉 can be directly
extracted from the data !

• DIS =⇒ The gluons transverse size ∆x⊥ ∼ 1/Q and
their longitudinal momentum kz = xP are fixed by
the measured quantities x and Q2.

• The “gluon distribution” :

xG(x, Q2) ≡ x
dNg

dx
≈ dNg

dkzdbz

since: dkzdbz ≈ dkz/kz = dx/x

xG(x, Q2)
πR2

=
∫ Q2

d2k⊥
(2π)2

ng = 〈A2〉Q

Q plays the same role as k̄ in the general case.
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• The condition for non–perturbative behaviour :

g2 〈A2〉Q ∼ Q2

=⇒ An equation for Q2 = Q2
s(x) :

Q2
s(x) ( αs

xG(x, Q2
s(x))

πR2

• Physical interpretation :

Qs(x) = “saturation momentum”

For k⊥ ≤ Qs(x) : strong non–linear effects which
should lead to gluon saturation :

ng ∼ 1
αs

) 1 for k⊥ ≤ Qs(x)

• Qs(x) increases rapidly with the energy (1/x), and
also with the atomic number A for a large nucleus.

• For protons at HERA, or heavy nuclei at RHIC,

Qs is estimated to be on the order of 1 GeV

• Saturated gluons ⇐⇒ Strong classical color fields

Color Glass Condensate



II. Deep Inelastic Scattering at Small–x

A. Generalities (kinematics, structure functions,
parton picture)

electron(k) + proton(P) −→ electron(k’) + X(PX)

• X : undetected hadronic system

k
k’

electron

P
proton

p
p+q

q=k-k’

X

• s = (P + k)2 : center–of–mass energy squared

• Two independent kinematical invariants :

1) Q2 ≡ −qµqµ = −(k − k′)2 (Q2 ≥ 0)

2) x ≡ Q2

2P · q =
Q2

Q2 + W 2 − M2
(Bjorken′s x)

Here: W 2 ≡ (P + q)2 ≥ M2 =⇒ 0 ≤ x ≤ 1

• For Q2 ' M2
Z =⇒ one photon exchange (γ∗)



• “Deep inelastic” or Bjorken limit :

Both Q2 and P · q ) M2 with x = fixed

• “Small-x” or High energy limit :

W 2 ) Q2 > M2 =⇒ x ( Q2

W 2 ' 1

• DIS cross–section =⇒ Two “structure functions”
The total cross section for virtual photon absorbtion:

σγ∗p(x, Q2) = σT + σL =
4π2αem

Q2
F2(x, Q2)

σT,L = (4π2αem/Q2)FT,L,
F2 = FT + FL, F1 = FT /2x

• Kinematics + (Lorentz and gauge) symmetries

• What is the physical interpretation of FT,L ?
A measure of the quark and gluon distributions
in the proton in a suitable frame and gauge.

• The proton: A loosely bound assemblage of
constituents called ‘partons’ (quarks and gluons)
Why “loosely” ? Because of asymptotic freedom:

αs(Q2) ( 1
b ln(Q2/Λ2

QCD)
' 1 for Q2 ) Λ2

QCD

b = (11Nc − 2Nf )/12π, Nc = 3, ΛQCD ∼ 200 MeV.

=⇒ Typical binding energy ∼ ΛQCD



• A parton: A virtual excitation with virtuality
p2 − m2 ∼ Λ2

QCD and lifetime τpart ∼ 1/∆p0

• Proton Infinite Momentum Frame (IMF):

Any frame in which Pz ) M :

Pµ ( (P + M2

2P , 0, 0, P ) ( (P, 0, 0, P )

• In IMF, partons are longlived and nearly collinear.

Indeed: pµ = (p0, p⊥, pz) with pz = ξP and 0 ≤ ξ ≤ 1

ξ = longitudinal momentum fraction of the parton

Typically: p⊥ ∼ ΛQCD and p2 − m2 ∼ Λ2
QCD

that is: p2
0 − E2

p ∼ Λ2
QCD with Ep =

√
m2 + p2

⊥ + p2
z

But: pz = ξP ) m,ΛQCD =⇒ Ep ( pz ) p⊥

Also: p0 ( Ep ( pz and ∆p0 ∼ p0 − pz ( Λ2
QCD/2pz

pµ ≈ ξ(P, 0⊥, P ) = ξPµ

τpart ∼ 2pz

Λ2
QCD

) τvac ∼
1
pz

In this frame, the parton is well separated from the
vacuum fluctuations.

• DIS in IMF: γ∗ is absorbed by individual quarks



This is best seen in the Breit frame (qz = 0)

q

P=p qµ q0 q, , 0).
P

.

P 
µ

= ( ,0P , P )

p+q

 
= (

i) Transverse resolution :

q0 = P ·q
P → 0 as P → ∞ =⇒ Q2 ≡ −q2

0 + q2
⊥ ( q2

⊥

=⇒ The γ∗ momentum is mainly transverse

γ∗ is absorbed over a transverse distance ∆x⊥ ∼ 1/Q

Simultaneous scattering off two or more quarks is
suppressed by powers of 1/Q2 (“higher–twist”).

ii) Duration of the scattering process:

τ ∼ 1
Ep + q0 − Ep+q

( 2Pξ

Q2
' τpart ∼ 2Pξ

Λ2

Indeed: Ep ( pz = ξP , q0 ≈ 0, and

Ep+q =
√

m2 + q2
⊥ + p2

z ( pz + Q2/2pz

γ∗ is absorbed very fast compared to natural time scales

The proton constituents move almost freely over the
very short times scales corresponding to DIS !



iii) Mass–shell constraint for the outgoing quark :

0 = (p+q)2 = q2+2p·q = −Q2+2ξP ·q = −2P ·q(x−ξ)

ξ = x

• To compute σγ∗p, it is enough to know the quark
“distribution” at the time of scattering.

• Parton model (Bjorken, 69; Feynman, 72)
“Partons”: strictly on–shell and collinear: pµ = ξPµ.
(Consistent with QCD to lowest order in αs.)

• The quark distribution is fully specified as :

q(ξ)dξ = the probability of finding a quark with
longitudinal fraction between ξ and ξ + dξ

• Parton model calculation of the γ∗p cross-section

σγ∗p =
∑

f

∫ 1

0
dξ

[
qf (ξ) + q̄f (ξ)

]
σ̂γ∗f

• Partonic cross-sections :

σ̂T =
4π2αem

Q2
e2

f ξ δ(ξ − x), σ̂L = 0

• Parton model predictions for the structure functions:

F2(x) =
∑

f e2
f

[
xqf (x) + xq̄f (x)

]
= FT (x)

— F2(x) is independent of Q2 (“Bjorken scaling”)
— FL = 0 (“Callan–Gross relation”): spin 1/2.
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Figure 1: The F2 structure function as measured by the
H1 and ZEUS experiments for bins at high x as a function
of Q2. The bins centred around x = 0.25 are where scaling
was originally observed in the SLAC experiments.

From the review paper “Lectures on HERA physics”, by B. Foster,

EPJdirect A1, 1–11 (2003); hep-ex/0206011.
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Figure 2: The F2 structure function as measured by the
H1 and ZEUS experiments for bins at low x as a function
of Q2. The violations of Bjorken scaling are now obvious.

From the review paper “Lectures on HERA physics”, by B. Foster,

EPJdirect A1, 1–11 (2003); hep-ex/0206011.



• A pictorial view of the hadron as “seen” in DIS and
in IMF :

M
P

2R

xP
1

with  x << 1

1/Q

2R

P

• Lorentz contraction in the longitudinal direction
with γ = P/M ) 1

• Uncertainty principle: ∆z ∼ 1
pz

= 1
xP

• Partons with typical x (not too small) are confined
to the Lorentz contracted disk.

• Partons with very small x ' 1 (“wee”, or “slow”)
are NOT !



• Small–x ←→ High energy

x =
Q2

Q2 + W 2
( Q2

W 2
' 1 when W 2 ) Q2

• With increasing Q2 : one increases the spatial
resolution in the transverse plane : ∆x⊥ ∼ 1/Q

• With decreasing x :

— one increases the resolution in time: ∆t ∼ 2xP
Q2

— but one reduces the spatial resolution in the

longitudinal direction: ∆z ∼ 1
xP

• Partons are not free particles, but d.o.f. of QCD !

What should be the effects of their interactions ?

— give the partons a transverse dimension;

— introduce gluon influence on F2;

— generate a dense gluonic system at very small–x;

— breakdown of the “leading–twist” approximation

in the gluonic sector.



B. Parton Evolution in QCD

• In QCD, partons have a substructure, in terms of
virtual fluctuations.

• Parton cascades : A fast parton (pµ ( (p, 0⊥, p)) can
decay into two partons which are still fast, and thus
will exist for a long time:

kµ

(p-k) µ

kz= xp

p
p-k

(1-x)p ),

, xp), k= ( E

k,p-k= ( E
k

-

∆E = −p+
√

x2p2 + k2
⊥+

√
(1−x)2p2 + k2

⊥ ≈ k2
⊥

2xp
+

k2
⊥

2(1−x)p

∆t ∼ min(x, 1 − x)p
k2
⊥

) τvac ∼
1
kz

• The ensuing partons can split again, into fluctuations
with even smaller kz, and thus shorter lifetimes.

• In the absence of any external interaction, the
cascade develops until very slow partons, with
kz = xp ∼ k⊥, get formed.
Then, the partons recombine back.

• Partons within the same cascade are coherent.



k
decreases

z

xP

• In DIS, γ∗ hooks a quark having kz = xP and
transverse size ∆x⊥ ∼ 1/Q in some cascade.

The coherence of that cascade is lost, and its partons
are released in the final state.

(q) 

.
P

.

k+q

k2

3k

k1

k

4k
k = xP

ki = xiP

>x11>x4 >x3 >x 2 >x



F2(x, Q2) =
∑

f e2
f

[
xqf (x, Q2) + xq̄f (x, Q2)

]

qf (x, Q2)dx = # of quarks of flavor f with
longitudinal fraction between x and x + dx and
localized in transverse space to a size 1/Q

xqf (x, Q2) =
∫ Q2

d2k⊥ x
dNf

dxd2k⊥

• With increasing Q2, one can “see” components of
the quark which are smaller and smaller.

x Q0

x

*

Q*

• Nearly collinear splitting (k⊥ ' kz = zp)

kµ

p =(p, 0µ ,p)

(p-k) µ (1-z)p )

=(zp, k ,

= ( ,- k(1-z)p ,

zp)

dP =
αsCF

2π
dk2

⊥
k2
⊥

1 + (1 − z)2

z
dz (CF = tata = 4/3)



Collinear evolution of the quark distribution

• Increase Q2
0 −→ Q2 at fixed x :

(Q0)

P

(Q)

p=x0P

p’ =zp = xP

.

p=xP
P

k

0x=zx

qf (x, Q2) = qf (x, Q2
0)+

αsCF

2π
ln

Q2

Q2
0

∫ 1

x

dz

z

1 + z2

1 − z
qf

(x

z
, Q2

0

)

where the integral over z has been generated as:
∫ 1

0
dx0 qf (x0)

∫ 1

0
dz δ(x − zx0) =

∫ 1

x

dz

z
qf

(x

z
)

• If αs ln(Q2/Q2
0) ∼ 1 =⇒ need for resummation :

∂qf

∂ ln Q2
(x, Q2) =

αs

2π

∫ 1

x

dz

z
Pqq(z) qf

(
x

z
, Q2

)

with the q → q splitting function :

Pqq(z) = CF

{ 1 + z2

(1 − z)+
+

3
2
δ(1 − z)

︸ ︷︷ ︸
virtual corr.

}

• All orders (αs ln Q2)n

• Local in Q2, non–local in x



Adding the gluons

(q) 

P

.

qg

gg

gq

P

P

P

qqP

• Coupled equations for qf (x, Q2) and G(x, Q2) :

∂qf (x, Q2)
∂ ln Q2

=
αs

2π

∫ 1

x

dz

z

{
Pqq(z) qf

(x

z
, Q2

)
+

+ Pqg(z) G
(x

z
, Q2

)}

∂ G(x, Q2)
∂ lnQ2

=
αs

2π

∫ 1

x

dz

z

{
Pgg(z)G

(x

z
, Q2

)
+

+ Pgq(z)
∑

f,f̄

qf

(x

z
, Q2

)}

DGLAP (Dokshitzer, Gribov, Lipatov, Altarelli, Parisi)



The small–x limit of DGLAP evolution

• Gluon splitting dominates at small x !

(q) 

k

1kx1 > x

x2 x1>
x2 x1>

x23x >

x

(q) 

x1d
x11k 2

1kd 2
x1d

x11k 2
1kd 2

x1

x1
s

x1d

s

. ..

x

P

> x

(A) (B)

(A) αs

∫ x2

x
dx1
x1

= αs ln x2
x ( αs ln(1/x)

(B) α2
s

∫ x3

x
dx2
x2

∫ x2

x
dx1
x1

( 1
2

(
αs ln(1/x)

)2

• Is this effect included in DGLAP ?
Only to the extent that Q2 ) k2

⊥ ) k2
1⊥ ) k2

2⊥ . . . !

(A) αs ln(1/x) lnQ2 ; (B)
[

1
2! αs ln(1/x) lnQ2

]2

• These are the terms which dominate when both
ln(1/x) and lnQ2 are large, such that:

αs ln(1/x) lnQ2 ∼ 1

but αs ln(1/x) ' 1 and αs lnQ2 ' 1
“Double leading-log approximation” (DLA)



The DLA evolution equation

k1x1

(q) 
k+q

k k1 kn

k

x1

k2x2,

x2 xn

2Q

s
2Qln 1

xln

knxn ,

n!( )2

P

.

,

>>

x,

2 >> 2 >> ... >> 2

x << << << ... << << 1

n
Resummation of all terms
1

∂qf

∂ ln Q2
(x, Q2) ( αs

2π

∫ 1

x

dz

z
Pqg(z) G

(
x

z
, Q2

)

∂ xG

∂ lnQ2
(x, Q2) ( αsNc

π

∫ 1

x

dz

z

x

z
G

(
x

z
, Q2

)

Exercice Show that in the DLA:

∂F2(x, Q2)
∂ ln Q2

( αs

3π

( ∑

f

e2
f

)
xG(x, Q2)

The evolution is driven by the gluon distribution !



• Local evolution equation for xG(x, Q2)

∂ xG(x, Q2)
∂ lnQ2∂ ln 1

x

=
αsNc

π
xG(x, Q2)

Exercice
Show that asymptotically (αs ln(1/x) lnQ2 ) 1) the
solution xG(x, Q2) has the following behaviour:
i) For fixed coupling αs (with ᾱs ≡ αsNc/π):

xG(x, Q2) ∝ exp

{
2

√

ᾱs ln
1
x

ln
Q2

Q2
0

}

where Q2
0 is an arbitrary reference scale.

ii) For running coupling αs(Q2) = 1
b ln(Q2/Λ2) :

xG(x, Q2) ∝ exp

{
2

√
Nc

πb
ln

1
x

ln
ln(Q2/Λ2)
ln(Q2

0/Λ2)

}

• Quite rapid growth with 1/x : slower than any
power of 1/x, but faster than any power of ln(1/x).

• But DLA is not truly interesting:
— Irrelevant for HERA: the small–x data correspond to
rather low Q2, with αs ln(1/x) >∼ 1 and ln(1/x) > lnQ2.
— DLA is not the evolution towards high density
partonic systems: An increasing number of smaller and
smaller gluons which do not overlap with each other.


