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Testing fluid dynamics with the 
      relationship between    andv2 v4

  ,   : different anisotropic flow harmonics…

 which can be computed within ideal fluid dynamics
 analytically: difference between slow and fast particles;
 numerically;

 whose behavior in a non-equilibrium scenario can be qualitatively 
predicted;

and which can be measured, testing models.

N.Borghini & J.-Y.Ollitrault, Phys. Lett. B 642 (2006) 227
R.S.Bhalerao, J.-P.Blaizot, N.B., J.-Y.O., Phys. Lett. B 627 (2005) 49
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Anisotropic (collective) flow
Consider a non-central collision:

anisotropy of the source  (in the 
plane transverse to the beam)

⇒ anisotropic pressure gradients 
(larger along the impact parameter)
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⇒ anisotropic fluid velocities, 
anisotropic emission of particles:
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Anisotropic (collective) flow
Consider a non-central collision:

anisotropy of the source  (in the 
plane transverse to the beam)

⇒ anisotropic pressure gradients 
(larger along the impact parameter)

⇒ anisotropic fluid velocities, 
anisotropic emission of particles:

“anisotropic collective flow”

average over particles

Nd
d3

∝ d
d d

[1 + 2 cos ( − ) + 2 cos 2( − ) + · · · ]v1 ϕ ϕ
ypTpTp

v2E ΦR ΦR

N

ϕ
ϕ 〉

More particles along the impact parameter (  -     = 0 or 180°) than 
perpendicular to it      “elliptic flow”    ≡  cos 2(  -     )  > 0.〈v2
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RHIC has confirmed that we should not care too much about   ,   … 

However,    measurements are now common!

To be of any relevance for phenomenology, any computation of elliptic 
flow    should be accompanied by a simultaneous computation of    !
This requires zero additional computing time, since both can be 
expressed in terms of the same quantities:

In the collision of identical nuclei (Au-Au, Cu-Cu, Pb-Pb…), the odd 
Fourier harmonics vanish at midrapidity by symmetry:
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Anisotropic (collective) flow
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Heavy-ion collisions: 
fluid-dynamics description

⓪ Creation of a dense “collection” of particles.
stolen from Steffen Bass
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Heavy-ion collisions: 
fluid-dynamics description

⓪ Creation of a dense “collection” of particles.
stolen from Steffen Bass

λ① If the mean free path   is much smaller than the dimensions of 
the system, after some time it thermalizes (temperature     ).

fireball can be described by fluid dynamics
Tin.
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Heavy-ion collisions: 
fluid-dynamics description

⓪ Creation of a dense “collection” of particles.

λ② The fluid expands: density decreases,   increases (system size also).

③ At some time, the mean free path is of the same order as the 
system size: fluid dynamics is no longer a valid description:

usually parameterized in terms of a temperature      .
(kinetic) “freeze-out”

Tf.o.

stolen from Steffen Bass

λ① If the mean free path   is much smaller than the dimensions of 
the system, after some time it thermalizes (temperature     ).

fireball can be described by fluid dynamics
Tin.
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Heavy-ion collisions: 
fluid-dynamics description

At freeze-out, each fluid cell emits particles according to thermal 
distributions (Bose–Einstein, Fermi–Dirac):
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Heavy-ion collisions: 
fluid-dynamics description

At freeze-out, each fluid cell emits particles according to thermal 
distributions (Bose–Einstein, Fermi–Dirac):

fluid cell velocity

particle momentumfreeze-out hypersurface

A consistent ideal-hydrodynamics picture requires that Tf.o. ! Tin.

⇔
ideal-fluid limit = small-      limitTf.o.

   one can compute the particle distribution in a model-independent, 
analytic way (using a saddle-point approximation).

N.Borghini, J.-Y.Ollitrault PLB 642 (2006) 227
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Ideal fluid-dynamics: analytical results
Slow particles (                    ) move together with the fluid.pT /m umax

(
π
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There exists a fluid cell whose velocity equals 
the particle velocity: minimizes       .pµuµ
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uy

pT /m
    Integrand in the Cooper-Frye spectrum is 
Gaussian, with width ∝ 1/min(        ) = 1/     .pµuµ

√ √
m

saddle-point approximation!
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 Similar momentum distributions for different particles

              identical for all particles!
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Ideal fluid-dynamics: analytical results
Fast particles (                    ) move faster than the fluid.pT /m <umax(0)

ux

uy
pT /m Such a particle was emitted by a cell along 

the direction of its velocity where the fluid is 
fastest (often, close to the edge of the fluid).

Saddle-point expansion of the Cooper-Frye 
formula around the minimum of      . pµuµ



check the domain of validity!
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Ideal fluid-dynamics: analytical results
Fast particles (                    ) move faster than the fluid.pT /m <umax(0)

ux

uy
pT /m Such a particle was emitted by a cell along 

the direction of its velocity where the fluid is 
fastest (often, close to the edge of the fluid).

Saddle-point expansion of the Cooper-Frye 
formula around the minimum of      . pµuµ

 Momentum distribution

 To leading order in the fluid-velocity anisotropies    :

 Assuming additionally that           , one finds for     large enough: 
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Ideal fluid-dynamics: numerical results

0.63

3-dimensional (Bjorken) ideal-fluid dynamics pushed to very large 
times (      is small) of a semi-peripheral Au-Au collision “at RHIC”:Tf.o.

Due to the large eccentricity, the ratio deviates from the analytical 
value 1/2: difference under control (smaller for more central collisions).



Anisotropic flow: 
out-of-equilibrium scenario

Despite the terminology, “flow” does not imply fluid dynamics.

Nv4v2An exact computation of the dependence of    ,    on the number    
of collisions undergone by particles requires a microscopic transport 
model, yet one can guess the general tendency.
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of collisions undergone by particles requires a microscopic transport 
model, yet one can guess the general tendency.
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v2

 For a given number of collisions, the system thermalizes: further 
collisions no longer increase   .

N

v2 fluid-dynamics regime
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should be quantified!



Anisotropic flow: 
out-of-equilibrium scenario
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Anisotropic flow: 
out-of-equilibrium scenario
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more detail in N.B., Eur. Phys. J. A 29 (2006) 27
& in R.S.Bhalerao, J.-P.Blaizot, N.B., J.-Y.Ollitrault, PLB 627 (2005) 49

One expects the number of collisions    that create anisotropic flow 
to become smaller and smaller

 with increasing transverse momentum;

 with increasing rapidity;

 with increasing impact parameter;

 when decreasing the system size by going to smaller systems;

 when decreasing the beam energy;

leading to larger and larger               ratios.
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Testing fluid dynamics with the 
      relationship between    andv2 v4

The experience from RHIC has taught us that one more anisotropic 
flow harmonic is measurable and non-zero… Good news!

However,    has not attracted much attention from phenomenologists. v4

 An analytical ideal-fluid dynamics calculation predicts scaling laws:

              identical for all “slow” particles:               universal;

 for fast particles                   .

 Qualitative arguments suggest that an out-of-equilibrium evolution 
leads to                   .

(checked in a transport model by C.Gombeaud & J.-Y.Ollitrault   )
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Constraining models with    and   : 
some caveats
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v4v2

Comparisons of experimental data on     with the ideal-fluid dynamics 
prediction require some care…
Ideal hydro tells “to leading order in the fluid-velocity anisotropies, 
                            for each type of fast particle”. 
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 Corrections to the leading-order approximation can lead to a factor 
significantly different from    (cf. the numerical simulation above).
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v2 Elliptic flow    is known to vary strongly with the particle type, 
transverse momentum and rapidity, so that any averaging spoils the 
simple relationship: 
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 Corrections to the leading-order approximation can lead to a factor 
significantly different from    (cf. the numerical simulation above).

 Don’t expect          for low-    particles!  v4
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