Elliptic Anisotropic flow

The anisotropy in particle production is not entirely described by v_2 ! If higher harmonics v_4 , $(v_6...)^*$.

No obvious reason (symmetry considerations...) why these harmonics should reflect different aspects (initial geometry, time scales...) of the collisions \Rightarrow should be studied together with v_2 .

Kolb, Sollfrank & Heinz; Huovinen; Borghini & Ollitrault; Ko, Chen & Zhang

- Theorists:
 - v_2 predictions should be accompanied by v_4 predictions;
 - a do not omit the STAR v_4 when fitting your favorite model(s) to "anisotropic flow data".
- Experimentalists: please provide us with further data (easy request...) (what has become of PHENIX preliminary results, nucl-ex/0506019?)

* The physics behind v_1 might be different...

TECHQM workshop, BNL, May 6-7, 2008

Universität Bielefeld

Experimentalists are from Mars, theorists are from Venus

(J.Nagle & T.Ullrich, Cargèse 2001)

Theorists know the reaction plane, experimentalists do not measure it \Rightarrow mismatch between

- what theorists compute within a given model $\equiv v_n$ ("true" flow);
- what experimentalists extract from their data: estimates $(v_n \{ EP \}, v_n \{ 2 \}, v_n \{ 4 \}, v_n \{ \infty \} ...)$, obtained using various methods of analysis that have different sensitivities to "parasitic" effects; ("nonflow" correlations between particles, fluctuations of flow itself...).

IF my wish: that theorists analyze the outcome of their models using the methods used by experimentalists.

Codes implementing various methods (cumulants, Lee-Yang zeroes...) (soon) available at <u>http://www.physik.uni-bielefeld.de/~borghini/Software/</u>.