COLLECTIVE FLOW AND MULTIPARTICLE AZIMUTHAL CORRELATIONS

N. Borghini, P.M. Dinh, J.-Y. Ollitrault

• Standard collective flow analysis

 \rightarrow two-particle correlations

- Limited sensitivity

Phys. Lett. B**477** (2000) 51 Phys. Rev. C**62** (2000) 034902

• New method

 \rightarrow multiparticle correlations

- Integrated flow
- Differential flow
- Increased sensitivity
- Acceptance corrections

nucl-th/0007063, Phys. Rev. C (may 2001) nucl-th/0104xxx

FLOW

Flow \equiv azimuthal correlation with the reaction plane:

Fourier expansion of the azimuthal distributions of outgoing particles with respect to the <u>unknown</u> reaction plane:

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = A\left(1 + \mathbf{v_1}\,\cos\phi + \mathbf{v_2}\,\cos 2\phi + \cdots\right)$$

where:

$$v_n = \left\langle e^{in\phi} \right\rangle.$$

 $v_n(p_T, y)$ differential flow; $v_n(\mathcal{D})$ integrated flow.

 v_1 "directed" flow, v_2 "elliptic" flow.

At CERN SPS, v_1 and $v_2 \simeq 3\%$ for pions and protons. PHENIX & STAR analyses: $v_2 \simeq 5 - 6\%$.

STANDARD FLOW ANALYSIS

Coefficient v_n extracted from the measured two-particle azimuthal correlations:

$$\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle = \left\langle e^{in\phi_1} \right\rangle \left\langle e^{-in\phi_2} \right\rangle + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c$$
$$\equiv v_n^2 + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c.$$

[study of $\Delta \phi$ correlation (see Roy Lacey) or correlation between 2 subevents].

Expansion of two-particle correlations:

"STANDARD" ASSUMPTION: the measured two-particle azimuthal correlations are only due to flow:

$$v_n = \pm \sqrt{\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle}.$$

Other sources of two-particle azimuthal correlations are negligible:

$$v_n^2 \gg \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c.$$

Is that true?

TWO-PARTICLE NONFLOW ("DIRECT") CORRELATIONS

Many sources for
$$\langle e^{in(\phi_1 - \phi_2)} \rangle_c$$
:

- total momentum conservation;
- quantum "HBT" correlations;
- final state (strong / Coulomb) interactions;
- resonance decays;
- other sources? (minijets...)

 \Rightarrow the assumption $v_n^2 \gg \langle e^{in(\phi_1 - \phi_2)} \rangle_c$ underlying the standard analysis holds only if

> order 1 / N

Possibility: compute and subtract nonflow correlations.

OK, but nonflow correlations may not be under control...

Important: two-particle nonflow correlations scale as $\frac{1}{N}$ \Rightarrow dominant for peripheral collisions.

STANDARD FLOW ANALYSIS AT SPS

"Standard" assumption: $v_n^2 \gg \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c \sim \frac{1}{N}$.

- v_1 and $v_2 \simeq 3\%$ for pions and protons;
- total multiplicity in the collision $N \simeq 2500$.
- \Rightarrow the assumption is not valid.

- \Box : "data"
- •: data HBT
- \times : data (HBT & p_T conservation)

NEW METHOD

Idea: extract flow from multiparticle azimuthal correlations.

Method: compare flow with direct 3-particle correlations \Rightarrow eliminate (non-negligible) extra terms:

cumulant of the multiparticle correlations.

NEW METHOD: INTEGRATED FLOW $v(\mathcal{D})$

Cumulant of the four-particle azimuthal correlation:

$$\left\langle\!\left\langle e^{in(\phi_1 - \phi_2 + \phi_3 - \phi_4)}\right\rangle\!\right\rangle \equiv \left\langle e^{in(\phi_1 - \phi_2 + \phi_3 - \phi_4)}\right\rangle - 2\left\langle e^{in(\phi_1 - \phi_2)}\right\rangle^2 \\ = -v_n^4 + O\left(\frac{1}{N^3}\right)$$

Increased sensitivity: analysis valid if $v_n \gg \frac{1}{N^{3/4}}$.

DIFFERENTIAL FLOW $v'(p_T, y)$

(1.) Measure the integrated flow $\langle e^{in\phi} \rangle = v_n$ using many particles ("pions"): reaction plane determination.

2. Study the correlation between the azimuth ψ of a given particle ("proton") and the reaction plane: $\langle e^{-in\phi}e^{in\psi}\rangle$.

Idea: compare the flow term with the direct multiparticle azimuthal correlation. \Rightarrow Cumulant of the (1+3)-particle azimuthal correlation:

$$\left\langle\!\left\langle e^{in(\phi_1 - \phi_2 - \phi_3)} e^{in\psi}\right\rangle\!\right\rangle \equiv \left\langle e^{in(\phi_1 - \phi_2 - \phi_3)} e^{in\psi}\right\rangle - 2\left\langle e^{-in\phi} e^{in\psi}\right\rangle\!\left\langle e^{in(\phi_1 - \phi_2)}\right\rangle \\ = -v_n^3 \left[v'_n + O\left(\frac{1}{(Nv_n)^3}\right) \right].$$

COLLECTIVE FLOW AND MULTIPARTICLE AZIMUTHAL CORRELATIONS

- At SPS energies, two-particle azimuthal correlations due either to collective flow or nonflow effects are of the same magnitude. \Rightarrow the standard analysis is close to its validity limit $v_n \gg 1/N^{1/2}$.
- New method, using four-particle azimuthal correlations, allows measurements of smaller integrated flow values v_n ≫ 1/N^{3/4}.
 Sensitivity can still be improved, with multiparticle (involving 2k particles, k > 4) correlations.
- Detector acceptance corrections.
- Differential flow.

Two different methods to extract flow are available... $\Rightarrow \mathbf{HANDS WANTED!}$

Both methods may yield different results... "NEW" (unthought of) two-particle correlations!

EVENT FLOW VECTOR

For a given event:

$$Q_n = \frac{1}{\sqrt{M}} \sum_{k=1}^M e^{in\phi_k}$$

M as large as possible.

- Flow $\Leftrightarrow \langle Q_n \rangle = \sqrt{M} v_n \neq 0$: random walk with a preferred direction;
- Powers of $|Q_n|^2$ involve multiparticle azimuthal correlations:

$$|Q_n|^2 = \frac{1}{M} \sum_{j,k=1}^M e^{in(\phi_j - \phi_k)};$$

• Cumulants of the $|Q_n|$ distribution yield the flow:

$$\langle\!\langle |Q_n|^4 \rangle\!\rangle \equiv \langle |Q_n|^4 \rangle - 2 \langle |Q_n|^2 \rangle^2 = - \langle Q_n \rangle^4 + O\left(\frac{1}{M}\right)$$

Method valid if $\langle Q_n \rangle^4 \gg \frac{1}{M} \iff v_n \gg \frac{1}{M^{3/4}}$

• Increasing sensitivity using higher order cumulants $\langle |Q_n|^{2p} \rangle$.

CUMULANTS $\langle |Q_n|^{2p} \rangle$: PRACTICAL FLOW ANALYSIS

"old version": Phys. Rev. C63 (may 2001)

1. Compute
$$\bar{Q}_n = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} e^{in\bar{\phi}_k}$$
 for a given event ($\bar{\phi}_k$ measured angle).

2. Calculate the generating function $\mathcal{G}(z) = e^{z^*\bar{Q}_n + z\bar{Q}_n^*}$, then average over events. Why? because $\langle \mathcal{G}(z) \rangle = 1 + \dots + |z|^2 \langle |\bar{Q}_n|^2 \rangle + \dots + \frac{|z|^4}{4} \langle |\bar{Q}_n|^4 \rangle + \dots$

3. Deduce the cumulants, taking $\ln \langle \mathcal{G}(z) \rangle$:

$$\ln \langle \mathcal{G}(z) \rangle = 1 + \dots + |z|^2 \langle \langle |\bar{Q}_n|^2 \rangle + \dots + \frac{|z|^4}{4} \langle \langle |\bar{Q}_n|^4 \rangle + \dots$$

(4.) Extract the flow, using ln ⟨G(z)⟩ = ln I₀(2|z|⟨Q_n⟩).
→ for instance, 《|Q_n|⁶》 ≡ ⟨|Q_n|⁶⟩ - 9⟨|Q_n|⁴⟩ ⟨|Q_n|²⟩ + 12⟨|Q_n|²⟩³ = 4⟨Q_n⟩⁶.
(5.) Put your paper on nucl-ex.

 \Rightarrow Measurements of v_n require $|v_{2n}| \ll N v_n^2$.

Problem for directed flow at RHIC, not for elliptic flow.

BETTER CUMULANTS: ANY HARMONIC

"new version": keep an eye on nucl-th

1. Calculate the generating function $\mathcal{G}(z) = \prod_{k=1}^{M} (1 + z^* e^{in\phi_k} + z e^{-in\phi_k}),$ then average over events (ϕ_k measured angle).

$$\langle \mathcal{G}(z) \rangle = 1 + \dots + |z|^2 \left\langle \sum_{j \neq k} e^{in(\phi_j - \phi_k)} \right\rangle + \dots + \frac{|z|^4}{4} \left\langle \sum_{j,k,l,m} e^{in(\phi_j + \phi_k - \phi_l - \phi_m)} \right\rangle + \dots$$

2. Deduce the cumulants, taking $\langle \mathcal{G}(z) \rangle^{1/M} - 1$:

$$\langle \mathcal{G}(z) \rangle^{1/M} = 1 + \dots + |z|^2 (M-1) \left\langle \! \left\langle e^{in(\phi_j - \phi_k)} \right\rangle \! \right\rangle + \dotsb$$

3. Extract the flow, using $\langle \mathcal{G}(z) \rangle^{1/M} - 1 = I_0 (2M \boldsymbol{v_n} |z|)^{1/M} - 1$.

Work still in progress (improving acceptance corrections).

WHY FLOW?

- Influence of flow on two-particle correlations (HBT, Coulomb...).
- Observation of possible parity violation requires accurate flow determination.