Are there monojets in proton-nucleus collisions at high energy?

Nicolas BORGHINI

Universität Bielefeld

in collaboration with François GELIS

Are there monojets in high-energy proton-nucleus collisions?

A proton colliding on a heavy nucleus produces a gluon with a high transverse momentum k_{\perp} .

How many collisions did the gluon undergo in the nucleus? of what kind? — many soft collisions (monojet)?

- one hard scattering accompanied by soft collisions (dijet)?

Within the Color Glass Condensate framework, one can compute the probability to have n collisions above a given threshold k_{\perp}^{\min} , their momentum distribution, study the dependence on k_{\perp} , k_{\perp}^{\min} and Q_{s} ... And answer the question!

N.Borghini & F.Gelis, Phys. Rev. D 74 (2006) 054025

N.Borghini – 1/10

Gluon production in pA collisions

The Color Glass Condensate framework provides an analytical formula for the number of gluons produced per unit transverse momentum and rapidity in the high-energy collision between a small projectile (= a weak color source which only contributes to 1st order) and a large nucleus (= classical Yang-Mills fields): cf. François on Thursday!

$$\frac{\mathrm{d}N_g}{\mathrm{d}\mathbf{p}_{\perp}\mathrm{d}y} = \frac{1}{16\pi^3 p_{\perp}^3} \int \frac{\mathrm{d}^2\mathbf{k}_{\perp}}{(2\pi)^2} k_{\perp}^2 C(\mathbf{k}_{\perp}) \underbrace{\varphi_p(\mathbf{p}_{\perp} - \mathbf{k}_{\perp})}_{\mathbf{q}_{\perp}}$$

"non-integrated gluon distribution" in the proton

which includes all multiple scatterings of the gluon on the nucleus.

Quark Matter 2006, Shanghai, November 14–20, 2006

Gluon production in pA collisions

The Color Glass Condensate framework provides an analytical formula for the number of gluons produced per unit transverse momentum and rapidity in the high-energy collision between a small projectile (= a weak color source which only contributes to 1st order) and a large nucleus (= classical Yang-Mills fields): cf. François on Thursday!

$$\frac{\mathrm{d}N_g}{\mathrm{d}\mathbf{p}_{\perp}\mathrm{d}y} = \frac{1}{16\pi^3 p_{\perp}^3} \int \frac{\mathrm{d}^2\mathbf{k}_{\perp}}{(2\pi)^2} k_{\perp}^2 C(\mathbf{k}_{\perp}) \underbrace{\varphi_p(\mathbf{p}_{\perp} - \mathbf{k}_{\perp})}_{\mathbf{q}_{\perp} \mathbf{q}_{\perp} \mathbf{q}_{\perp}}$$

"non-integrated gluon distribution" in the proton

which includes all multiple scatterings of the gluon on the nucleus.

 $C(\mathbf{k}_{\perp})$, which is the Fourier transform of a correlator of Wilson lines, admits a transparent interpretation à la Glauber when the distribution of color sources in the nucleus has Gaussian correlations, either local (McLerran-Venugopalan model) or non-local (in the regime reached after evolution to large rapidities): $C(\mathbf{k}_{\perp}) = \sum \mathfrak{C}_n(\mathbf{k}_{\perp})$.

number of collisions of the gluon on the nucleus \nearrow^n

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini — 2/10

Gluon production in pA collisions $C(\mathbf{k}_{\perp}) = \sum \mathfrak{C}_n(\mathbf{k}_{\perp})$ probability that the gluon acquire the momentum \mathbf{k}_{\perp} while going though the nucleus. $\mathbf{k} = P_n(\mathbf{k}_{\perp}) \equiv \mathfrak{C}_n(\mathbf{k}_{\perp})/C(\mathbf{k}_{\perp})$ probability that the gluon acquire the momentum \mathbf{k}_{\perp} while undergoing *n* collisions on the nucleus.

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini — 3/10

Gluon production in pA collisions $C({f k}_{\perp}) = \sum \mathfrak{C}_n({f k}_{\perp})$ probability that the gluon acquire the momentum ${f k}_{\perp}$ while going though the nucleus. if $P_n(\mathbf{k}_{\perp}) \equiv \mathfrak{C}_n(\mathbf{k}_{\perp})/C(\mathbf{k}_{\perp})$ probability that the gluon acquire the momentum ${f k}_\perp$ while undergoing n collisions on the nucleus. One further step: probability $P_n(\mathbf{k}_{\perp}|\mathbf{k}_{\perp}^{\min})$ that the gluon acquire the momentum k_{\perp} while undergoing n collisions with momentum transfers $q_{\perp} \geq k_{\perp}^{\min}$ in traversing the nucleus: $P_n(\mathbf{k}_{\perp}|\mathbf{k}_{\perp}^{\min}) = \frac{\mathrm{e}^{-\mu_0^2 \sigma_{\mathrm{tot}}}}{C(\mathbf{k}_{\perp})} \sum_{n=0}^{+\infty} \rho^{p+n} \int_0^L \mathrm{d}z_1 \int_{z_1}^L \mathrm{d}z_2 \cdots \int_{z_{p+n-1}}^L \mathrm{d}z_{n+p}$ $\times \int_{\Lambda}^{k_{\perp}^{\min}} \frac{\mathrm{d}^{2}\mathbf{k}_{1\perp}}{(2\pi)^{2}} \cdots \frac{\mathrm{d}^{2}\mathbf{k}_{p\perp}}{(2\pi)^{2}} \int_{k^{\min}} \frac{\mathrm{d}^{2}\mathbf{k}_{p+1\perp}}{(2\pi)^{2}} \cdots \frac{\mathrm{d}^{2}\mathbf{k}_{p+n\perp}}{(2\pi)^{2}}$ $\times (2\pi)^2 \delta(\mathbf{k}_{1\perp} + \dots + \mathbf{k}_{p+n\perp} - \mathbf{k}_{\perp}) \sigma(\mathbf{k}_{1\perp}) \cdots \sigma(\mathbf{k}_{p+n\perp})$ which can be computed (here using a generating function of the P_n). N.Borghini – 3/10 Quark Matter 2006, Shanghai, November 14–20, 2006 Universität Bielefeld

Gluon production in pA collisions $C({f k}_{\perp}) = \sum \mathfrak{C}_n({f k}_{\perp})$ probability that the gluon acquire the momentum ${f k}_{\perp}$ while going though the nucleus. if $P_n(\mathbf{k}_{\perp}) \equiv \mathfrak{C}_n(\mathbf{k}_{\perp})/C(\mathbf{k}_{\perp})$ probability that the gluon acquire the momentum \mathbf{k}_{\perp} while undergoing n collisions on the nucleus. One further step: probability $P_n(\mathbf{k}_{\perp}|\mathbf{k}_{\perp}^{\min})$ that the gluon acquire the momentum k_{\perp} while undergoing *n* collisions with momentum transfers $q_{\perp} \geq k_{\perp}^{\min}$ in traversing the nucleus: _____ density of color charges $\Leftrightarrow Q_s$ $P_n(\mathbf{k}_{\perp}|\mathbf{k}_{\perp}^{\min}) = \underbrace{\frac{e^{-\mu_0^2}\sigma_{\text{tot}}}{C(\mathbf{k}_{\perp})}}_{n=0} \sum_{p=0}^{+\infty} \rho^{p+n} \int_0^L dz_1 \int_{z_1}^L dz_2 \cdots \int_{z_{p+n-1}}^L dz_{n+p}$ density of scattering $\times \int_{\Lambda}^{k_{\perp}^{\min}} \frac{\mathrm{d}^2 \mathbf{k}_{1\perp}}{(2\pi)^2} \cdots \frac{\mathrm{d}^2 \mathbf{k}_{p\perp}}{(2\pi)^2} \int_{k_{\perp}^{\min}} \frac{\mathrm{d}^2 \mathbf{k}_{p+1\perp}}{(2\pi)^2} \cdots \frac{\mathrm{d}^2 \mathbf{k}_{p+n\perp}}{(2\pi)^2}$ centers per unit area $\times (2\pi)^2 \delta(\mathbf{k}_{1\perp} + \dots + \mathbf{k}_{p+n\perp} - \mathbf{k}_{\perp}) \sigma(\mathbf{k}_{1\perp}) \cdots \sigma(\mathbf{k}_{p+n\perp})$ which can be computed (here using a generating function of the P_n). Quark Matter 2006, Shanghai, November 14–20, 2006 N.Borghini - 3/10 Universität Bielefeld

Probability of having n collisions with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp}

Instead of calculating each $P_n(k_{\perp}|k_{\perp}^{\min})$ individually, we compute the generating function $F(z,k_{\perp}|k_{\perp}^{\min}) \equiv \sum_{n=0}^{\infty} P_n(k_{\perp}|k_{\perp}^{\min}) z^n$ which gives all the probabilities $P_n(k_{\perp}|k_{\perp}^{\min})$ at once, as well as the average number of scatterings $N(k_{\perp}|k_{\perp}^{\min}) = \sum_{n=0}^{\infty} nP_n(k_{\perp}|k_{\perp}^{\min}) = \frac{\mathrm{d}F}{\mathrm{d}z}(z=1,k_{\perp}|k_{\perp}^{\min}).$

Probability of having n collisions with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp}

Instead of calculating each $P_n(k_{\perp}|k_{\perp}^{\min})$ individually, we compute the generating function $F(z,k_{\perp}|k_{\perp}^{\min}) \equiv \sum_{n=0}^{\infty} P_n(k_{\perp}|k_{\perp}^{\min}) z^n$ which gives all the probabilities $P_n(k_{\perp}|k_{\perp}^{\min})$ at once, as well as the average number of scatterings $N(k_{\perp}|k_{\perp}^{\min}) = \sum_{n=0}^{\infty} nP_n(k_{\perp}|k_{\perp}^{\min}) = \frac{\mathrm{d}F}{\mathrm{d}z}(z=1,k_{\perp}|k_{\perp}^{\min}).$

We use two models with different gluon-scattering center differential cross sections: a^4N

- McLerran-Venugopalan model (no shadowing): $\sigma(q_{\perp}) = \frac{g^4 N_c}{2 q_{\perp}^2}$

- a Gaussian effective theory with leading-twist shadowing:

$$\mu_0^2 \sigma(q_\perp) = \frac{2\pi}{\gamma c} \frac{Q_s^2}{q_\perp^2} \ln \left[1 + \left(\frac{Q_s^2}{q_\perp^2} \right)^{\gamma} \right] \quad \text{with} \quad c \approx 4.84, \gamma \approx 0.64$$

Probability of having n collisions with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp} =10 GeV

 Q_s^2 = 2 GeV²

The width decreases with increasing threshold k_{\perp}^{\min} .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 5/10

The width decreases with increasing threshold k_{\perp}^{\min} .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 5/10

The width decreases with increasing threshold k_{\perp}^{\min} .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 5/10

 Q_s^2 = 2 GeV²

Quark Matter 2006, Shanghai, November 14–20, 2006

 Q_s^2 = 2 GeV²

Shifted Poisson distribution: $N(k_{\perp}|k_{\perp}^{\min}) = 1 + \bar{n}$ with $\bar{n} \propto 1/(k_{\perp}^{\min})^2$.

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 6/10

Momentum distribution of recoils with $q_{\perp} \geq k_{\perp}^{\min}$ balancing k_{\perp}

Momentum distribution of recoils with $q_{\perp} \geq k_{\perp}^{\min}$ balancing k_{\perp}

Momentum distribution of recoils with $q_{\perp} \geq k_{\perp}^{\min}$ balancing k_{\perp}

Momentum distribution of recoils with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp} = 10 GeV

strongly Q_s -dependent.

is the number of semi-hard scatterings gives access to Q_s .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 8/10

Momentum distribution of recoils with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp} = 10 GeV

strongly Q_s -dependent

unchanged as long as $Q_s \ll k_\perp$

is the number of semi-hard scatterings gives access to Q_s .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 8/10

Momentum distribution of recoils with $q_{\perp} \ge k_{\perp}^{\min}$ balancing k_{\perp} = 10 GeV

strongly Q_s -dependent

unchanged as long as $Q_s \ll k_\perp$

is the number of semi-hard scatterings gives access to Q_s .

Quark Matter 2006, Shanghai, November 14–20, 2006

N.Borghini – 8/10

Influence of shadowing on the number of recoils

 k_{\perp} = 10 GeV

Quark Matter 2006, Shanghai, November 14–20, 2006

Influence of shadowing on the number of recoils

Are there monojets in high-energy proton-nucleus collisions?

In a proton-nucleus collision, if a gluon is produced with a transverse momentum k_{\perp} larger than the saturation scale Q_s , this momentum is mostly provided by a single hard scattering with $q_{\perp} \approx k_{\perp}$, accompanied by a large number of independent scatterings with $q_{\perp} \lesssim Q_s$.

is dijets, rather than monojets

In a model that includes leading-twist shadowing, which describes the regime of very small x, the number of scatterings with $q_{\perp} \lesssim Q_s$ is significantly smaller than in the absence of shadowing.

The separation between the contributions of semi-hard ($q_{\perp} \sim Q_s$) and soft ($q_{\perp} \ll Q_s$) scatterings is less marked than in the shadowing-free McLerran-Venugopalan model.

Quark Matter 2006, Shanghai, November 14–20, 2006