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How many collisions did the gluon undergo in the nucleus? of what kind?
 many soft collisions (monojet)? 
 one hard scattering accompanied by soft collisions (dijet)?

A proton colliding on a heavy nucleus produces a gluon with a high 
transverse momentum    . k⊥

Within the Color Glass Condensate framework, one can compute the 
probability to have    collisions above a given threshold      , their 
momentum distribution, study the dependence on    ,       and    …

kmin
⊥n

Qsk⊥
And answer the question!

kmin
⊥
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Gluon production in pA collisions
The Color Glass Condensate framework provides an analytical formula 
for the number of gluons produced per unit transverse momentum and 
rapidity in the high-energy collision between a small projectile (= a 
weak color source which only contributes to 1st order) and a large 
nucleus (= classical Yang–Mills fields):

which includes all multiple scatterings of the gluon on the nucleus.
“non-integrated gluon distribution” in the proton

          

dNg

dp⊥dy
=

1
16π3p3

⊥

∫
d2k⊥
(2π)2

k2
⊥C(k⊥) ϕp(p⊥ − k⊥)

cf. François on Thursday!
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C(k⊥)        , which is the Fourier transform of a correlator of Wilson lines, 
admits a transparent interpretation à la Glauber when the distribution 
of color sources in the nucleus has Gaussian correlations, either local 
(McLerran-Venugopalan model) or non-local (in the regime reached 
after evolution to large rapidities):                         .C(k⊥) =

∑

n

Cn(k⊥)

number of collisions of the gluon on the nucleus

cf. François on Thursday!
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Gluon production in pA collisions
                       probability that the gluon acquire the momentum 
while going though the nucleus. 

k⊥C(k⊥)=
∑

n

Cn(k⊥)

n

Pn(k⊥) ≡ Cn(k⊥)/C(k⊥)                                 probability that the gluon acquire the 
momentum     while undergoing    collisions on the nucleus. k⊥
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momentum     while undergoing    collisions on the nucleus. k⊥

Pn

n

Pn(k⊥|kmin
⊥ )

k⊥

One further step: probability                that the gluon acquire the 
momentum     while undergoing    collisions with momentum transfers
            in traversing the nucleus:q⊥≥ kmin

⊥

Pn(k⊥|kmin
⊥ ) =

e−µ2
0σtot

C(k⊥)

+∞∑

p=0

ρp+n

∫ L

0
dz1

∫ L

z1

dz2 · · ·
∫ L

zp+n−1

dzn+p

×
∫ kmin

⊥

Λ

d2k1⊥
(2π)2

· · · d2kp⊥
(2π)2

∫

kmin
⊥

d2kp+1⊥
(2π)2

· · · d2kp+n⊥
(2π)2

×(2π)2δ(k1⊥ + · · · + kp+n⊥ − k⊥)σ(k1⊥) · · · σ(kp+n⊥)

ρ
L L Lµ0

which can be computed (here using a generating function of the    ).

2
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2

density of scattering 
centers per unit area

⇕ 
Qs

density of color charges ⇔ Qs



Probability of having    collisionsn
with             balancing    q⊥ ≥ kmin

⊥ k⊥
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Instead of calculating each                individually, we compute the 

generating function                                           which gives all 

the probabilities               at once, as well as the average number 

of scatterings                                                                . 

Pn(k⊥|kmin
⊥ )

F (z, k⊥|kmin
⊥ ) ≡

∞∑

n=0

Pn(k⊥|kmin
⊥ ) zn

Pn(k⊥|kmin
⊥ )

N(k⊥|kmin
⊥ ) =

∞∑

n=0

nPn(k⊥|kmin
⊥ ) =

dF

dz
(z = 1, k⊥|kmin

⊥ )
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We use two models with different gluon-scattering center differential 
cross sections:

 McLerran–Venugopalan model (no shadowing):

 a Gaussian effective theory with leading-twist shadowing:

σ(q⊥) =
g4Nc

2 q2
⊥

µ2
0σ(q⊥) =

2π

γc

Q2
s

q2
⊥

ln
[
1 +

(
Q2

s

q2
⊥

)γ]
c ≈ 4.84, γ ≈ 0.64with



Probability of having    collisionsn
with             balancing     = 10 GeVq⊥ ≥ kmin

⊥ k⊥
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    = 2 GeV2Q2
s

The width decreases with increasing threshold       .kmin
⊥
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    = 2 GeV2Q2
s for                             is most probableQs ! kmin

⊥ ! k⊥, n = 1

The width decreases with increasing threshold       .kmin
⊥
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s

        most 
probable
n = 0
kmin
⊥ > k⊥

for                             is most probableQs ! kmin
⊥ ! k⊥, n = 1

The width decreases with increasing threshold       .kmin
⊥
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    = 2 GeV2Q2
s

n̄n−1

(n− 1)!
e−n̄

    shifted Poisson distribution:  “compulsory” scattering
      independent scatteringsPn

{
1
n− 1

        most 
probable
n = 0
kmin
⊥ > k⊥

for                             is most probableQs ! kmin
⊥ ! k⊥, n = 1
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    = 2 GeV2Q2
s

Number of recoils with q⊥ ≥ kmin
⊥

balancing    k⊥
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⊥

balancing    k⊥

universal for 
kmin
⊥ , Qs! k⊥
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    = 2 GeV2Q2
s

N(k⊥|kmin
⊥ ) = 1 + n̄ n̄ ∝ 1/(kmin

⊥ )2Shifted Poisson distribution:                         with                 .

Number of recoils with q⊥ ≥ kmin
⊥

balancing    k⊥

universal for 
kmin
⊥ , Qs! k⊥

forN ! 1 Qs" kmin
⊥ ! k⊥
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    = 2 GeV2Q2
s

kmin
⊥ ! Qs

universal for 

Momentum distribution of recoils
with             balancing    q⊥ ≥ kmin

⊥ k⊥

− dN

d ln kmin
⊥

≈ 2n̄ ∝ 1/(kmin
⊥ )2Shifted Poisson distribution:                                   .
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kmin
⊥ ! Qs

universal for 

Momentum distribution of recoils
with             balancing    q⊥ ≥ kmin

⊥ k⊥
kmin
⊥ ! k⊥unit-area peak centered around

for k⊥! Qs

− dN

d ln kmin
⊥

≈ 2n̄ ∝ 1/(kmin
⊥ )2Shifted Poisson distribution:                                   .
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    = 2 GeV2Q2
s

kmin
⊥ ! Qs

universal for 

Momentum distribution of recoils
with             balancing    q⊥ ≥ kmin

⊥ k⊥
kmin
⊥ ! k⊥unit-area peak centered around

for k⊥! Qs

− dN

d ln kmin
⊥

≈ 2n̄ ∝ 1/(kmin
⊥ )2Shifted Poisson distribution:                                   .

shape due 
to cutoff 
function
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Momentum distribution of recoils
with             balancing     = 10 GeVq⊥ ≥ kmin

⊥ k⊥
Qsstrongly    -dependent

the number of semi-hard scatterings gives access to    . Qs
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Momentum distribution of recoils
with             balancing     = 10 GeVq⊥ ≥ kmin

⊥ k⊥
unchanged as long as Qs ! k⊥Qsstrongly    -dependent

the number of semi-hard scatterings gives access to    . Qs
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Momentum distribution of recoils
with             balancing     = 10 GeVq⊥ ≥ kmin

⊥ k⊥
unchanged as long as Qs ! k⊥Qsstrongly    -dependent

the number of semi-hard scatterings gives access to    . Qs

the peak is
washed out
for Qs ! k⊥



MV model
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Influence of shadowing
on the number of recoils

k⊥   = 10 GeV
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model with
shadowing

Influence of shadowing
on the number of recoils

k⊥   = 10 GeV

less soft & semi-hard collisions 
weak sensitivity on charge density

Shadowing ⇒ “charge screening” 
{

{

weaker 
dependence

Qs



Are there monojets in high-energy 
proton-nucleus collisions?

In a proton–nucleus collision, if a gluon is produced with a transverse 
momentum     larger than the saturation scale    , this momentum is 
mostly provided by a single hard scattering with          , accompanied 
by a large number of independent scatterings with          .

k⊥
q⊥≈ k⊥

Qs

q⊥! Qs

dijets, rather than monojets

In a model that includes leading-twist shadowing, which describes the 
regime of very small   , the number of scatterings with           is 
significantly smaller than in the absence of shadowing. 
The separation between the contributions of semi-hard (          ) and 
soft (          ) scatterings is less marked than in the shadowing-free 
McLerran–Venugopalan model.

q⊥! Qsx

q⊥! Qs

q⊥∼ Qs
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