

RHIC Au–Au results: the fashionable view

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

Ideal fluid dynamics reproduce both p_t spectra and elliptic flow $v_2(p_t)$ of soft ($p_t \leq 2 \text{ GeV/c}$) identified particles for minimum bias collisions, near central rapidity.

This agreement necessitates a soft equation of state, and very short thermalization times: $\tau_{\text{thermalization}} < 0.6 \text{ fm/}c$.

strongly interacting Quark-Gluon Plasma

Ideal fluid dynamics in heavy-ion collisions

- A few reminders on fluid dynamics
- Ideal fluid dynamics in nucleus–nucleus collisions: theory
 - Overall scenario
 - General predictions of ideal fluid dynamics
 - Anisotropic flow
- Out-of-equilibrium scenario
 - Generic predictions
 - Reconciling data and theory (?)

Fluid dynamics: various types of flow

Fluid dynamics: various types of flow

Three numbers:

$$Kn = \frac{\lambda}{L}, \qquad Re = \frac{\varepsilon L v_{\text{fluid}}}{\eta}, \qquad Ma = \frac{v_{\text{fluid}}}{c_s}$$

 \Rightarrow an important relation:

$$Kn \times Re = \frac{\varepsilon \lambda v_{\text{fluid}}}{\eta} \sim \frac{v_{\text{fluid}}}{c_s} = Ma$$

Compressible flow: "Liquids are Ideal"

Viscosity \equiv departure from equilibrium

Ideal fluid picture of a heavy-ion collision

0. Creation of a dense "gas" of particles

(1) At some time τ_0 , the mean free path λ is much smaller than *all* dimensions in the system

 \Rightarrow thermalization (T_0), ideal fluid dynamics applies

2) The fluid expands: density decreases, λ increases (system size also)

(3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

"(kinetic) freeze-out"

Freeze-out usually parameterized in terms of a temperature $T_{\rm f.o.}$

If λ varies smoothly with temperature, consistency requires $T_{\text{f.o.}} \ll T_0$ is analytical predictions

Ideal fluid dynamics: general predictions

Consistent ideal fluid dynamics picture requires $T_{\rm f.o.} \ll T_0$ \Leftrightarrow Ideal-fluid limit = $T_{f,o} \rightarrow 0$ limit IF one can compute in a model-independent way the spectrum $E\frac{\mathrm{d}N}{\mathrm{d}^3\mathbf{p}} = C\int_{\Sigma} \exp\left(-\frac{(p^{\mu}u_{\mu}(x))}{T_{\mathrm{f}}}\right)$ and its azimuthal anisotropies ("flow") using saddle-point approximations around the minimum of

N.B. & J.-Y. Ollitrault, nucl-th/0506045

Ideal fluid dynamics: general predictions

Consistent ideal fluid dynamics picture requires $T_{\rm f.o.} \ll T_0$ \Leftrightarrow Ideal-fluid limit = $T_{f,o} \rightarrow 0$ limit IF one can compute in a model-independent way fluid velocity the spectrum $E\frac{\mathrm{d}N}{\mathrm{d}^3\mathbf{p}} = C\int_{\Sigma} \exp\left(-\frac{(p^{\mu}u_{\mu}(x))}{T_{\mathrm{f}}}\right)$ particle momentum and its azimuthal anisotropies ("flow") using saddle-point approximations around the minimum of

N.B. & J.-Y. Ollitrault, nucl-th/0506045

Heavy-ion observable: Anisotropic flow

Non-central collisions: parameters

Initial conditions in non-central collisions, will be characterized by

a parameter measuring the shape of the overlap region:

• spatial eccentricity
$$\epsilon = \frac{\langle y^2 - x^2 \rangle}{\langle y^2 + x^2 \rangle}$$

• two numbers measuring the size of the overlap region:

• "reduced" radius
$$\frac{1}{\bar{R}} = \sqrt{\frac{1}{\langle x^2 \rangle} + \frac{1}{\langle y^2 \rangle}}$$

(anisotropic flow caused by pressure gradients)

• transverse area of the collision zone $S = 2\pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle}$

Anisotropic flow: predictions of hydro

- Characteristic build-up time of v_2 is \overline{R}/c_s typical system size speed of sound
- v_2/ϵ constant across different centralities system eccentricity
- **v_2** roughly independent of the system size (Au–Au vs. Cu–Cu)
- \bullet v_2 increases with increasing speed of sound c_s
- Mass-ordering of the $v_2(p_T)$ of different particles (the heavier the particle, the smaller its v_2 at a given momentum)
- Relationship between different harmonics: $\frac{v_4}{(v_2)^2} = \frac{1}{2}$

If one can increase v_2 by increasing c_s

Mass-ordering of the $v_2(p_T)$

"Slow particles" $(p_t/m < u_{\max}(\frac{\pi}{2}))$ move together with the fluid

There is a point where the fluid velocity equals the particle velocity

Integrand in the momentum spectrum is <u>Gaussian</u>, with width $(p^{\mu}u_{\mu})_{\min}^{1/2} = \sqrt{m}$ saddle-point approximation!

Similar spectra for different hadrons:
 E dN/d³p = c^h(m) f(pt/m, y, φ)
 v_n(pt/m, y) universal!
 mass-ordering of v₂(pt, y)

RHIC anisotropic flow data and ideal-fluid dynamics

 $v_2(p_t)$ at midrapidity, minimum bias Au–Au collisions: STAR Collaboration, PRC 72 (2005) 014904

RHIC anisotropic flow data and ideal-fluid dynamics

 v_2 (hydro) flatter than data

RHIC anisotropic flow data and ideal-fluid dynamics

What if collisions cannot ensure equilibrium? Out-of-equilibrium scenario

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle $\overline{Kn^{-1}}$ requires some cascade model... ... but we can guess the general tendency! $\overline{\underline{R}}$

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle $\overline{Kn^{-1}}$ requires some cascade model... ... but we can guess the general tendency! $\overline{\frac{R}{\lambda}}$ In the absence of rescatterings ($Kn^{-1} = 0$), no flow develops

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle $\overline{Kn^{-1}}$ requires some cascade model... ... but we can guess the general tendency! $\frac{\overline{R}}{\lambda}$

- in the absence of rescatterings ($Kn^{-1} = 0$), no flow develops
- the more collisions, the larger the anisotropic flow

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle Kn^{-1} requires some cascade model...

... but we can guess the general tendency!

● in the absence of rescatterings ($Kn^{-1} = 0$), no flow develops

the more collisions, the larger the anisotropic flow

• for a given number of collisions, the system thermalizes: further collisions no longer increase v_2

An exact computation of the dependence of v_2 , v_4 on the number of collisions per particle (Kn^{-1}) requires some cascade model... ... but we can guess the general tendency! • in the absence of rescatterings ($Kn^{-1} = 0$), no flow develops the more collisions, the larger the anisotropic flow for a given number of collisions, the system thermalizes: further collisions no longer increase v_2 should be quantified! fully thermalized (hydro) incomplete thermalization

The natural time (resp. length) scale for v_2 is \bar{R}/c_s (resp. \bar{R}) \Rightarrow mean number of collisions per particle to build up v_2 : $Kn^{-1} \simeq \frac{\bar{R}}{\lambda}$

In the out-of-equilibrium scenario, v_2 depends on Kn^{-1} , hence on

• the system size \overline{R} • the system size \overline{R} • breakdown of the scale-invariance of hydrodynamics

The natural time (resp. length) scale for v_2 is \overline{R}/c_s (resp. \overline{R})

 \Rightarrow mean number of collisions per particle to build up v_2 :

$$Kn^{-1} \simeq \frac{\bar{R}}{\lambda} = \bar{R} \,\sigma \, n \left(\frac{\bar{R}}{c_s}\right)$$

 σ interaction cross section, $n(\tau)$ particle density

In the out-of-equilibrium scenario, v_2 depends on Kn^{-1} , hence on

• the system size \bar{R}

I breakdown of the scale-invariance of hydrodynamics

The natural time (resp. length) scale for v_2 is \overline{R}/c_s (resp. \overline{R}) \Rightarrow mean number of collisions per particle to build up v_2 : $Kn^{-1} \simeq \frac{\bar{R}}{\lambda} = \bar{R} \sigma n \left(\frac{\bar{R}}{c_s}\right) \simeq \frac{c_s}{c} \frac{\sigma}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$ σ interaction cross section, $n(\tau)$ particle density, S transverse surface In the out-of-equilibrium scenario, v_2 depends on Kn^{-1} , hence on \bullet the system size Rbreakdown of the scale-invariance of hydrodynamics the "control parameter" $\frac{1}{S} \frac{dN}{du}$

Number of collisions per particle to build up v_2 : $Kn^{-1} \simeq \frac{c_s}{c} \frac{\sigma}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$

If the variation (out-of-equilibrium scenario) or independence (ideal liquid paradigm) of v_2 with Kn^{-1} can be checked using its

- centrality dependence (using the universality of v_2/ϵ)
- beam-energy dependence
- **system-size** dependence \rightarrow importance of lighter systems
- rapidity dependence
- transverse momentum dependence

Number of collisions per particle to build up v_2 : $Kn^{-1} \simeq \frac{c_s}{c} \frac{\sigma}{S} \frac{\mathrm{d}N}{\mathrm{d}y}$

the variation (out-of-equilibrium scenario) or independence (ideal liquid paradigm) of v_2 with Kn^{-1} can be checked using its

- centrality dependence (using the universality of v_2/ϵ)
- beam-energy dependence
- **system-size** dependence \rightarrow importance of lighter systems
- rapidity dependence
 - (transverse momentum dependence)

 \checkmark As p_t increases, σ decreases, and so does Kn^{-1}

 \Rightarrow equilibrium is less and less likely "Breakdown of hydro at $p_t \gtrsim 2 \text{ GeV}$ " Teaney, PRC 68 (2003) 034913

RHIC anisotropic flow data and incomplete equilibration

Centrality and beam-energy dependence:

NA49 Collaboration, PRC 68 (2003) 034903

RHIC anisotropic flow data and incomplete equilibration

Centrality and beam-energy dependence:

NA49 Collaboration, PRC 68 (2003) 034903

Scaling law seems to work for RHIC data (+ matching with SPS) $v_2(Kn^{-1})$ increases steadily (no hint at hydro saturation in the data)

RHIC anisotropic flow data and incomplete equilibration

Incomplete equilibration: predictions for Cu–Cu flow

• The matching between central SPS and peripheral RHIC suggests that we can even compare systems with different densities, i.e., different σ (and c_s)

for compare Au–Au at b = 8 fm with Cu–Cu at b = 5.5 fm (similar centrality)

- If hydro holds, v_2 should scale like ϵ : $v_2(Cu) = 0.69 v_2(Au)$
- If thermalization is incomplete, $\frac{v_2}{\epsilon} \propto \frac{1}{S} \frac{dN}{dy} \propto Kn^{-1}$, i.e. $v_2(Cu) = 0.34 v_2(Au)$
- Cu–Cu further from equilibrium than Au–Au $\Rightarrow \frac{v_4}{(v_2)^2} > 1.2$

First results presented at QM'05 are too preliminary...

Out-of-equilibrium scenario: predictions for LHC

Measuring anisotropic flow at LHC, one should find

• $\frac{v_2}{c}$ larger than at RHIC

getting closer to equilibrium when flow develops

•
$$\frac{v_4(p_t)}{(v_2(p_t))^2}$$
 smaller than at RHIC

 \square closer to the ideal-fluid dynamics value $\frac{1}{2}$

Try different systems! (Pb–Pb vs. smaller nuclei)

Ideal liquid dynamics vs. out-of-equilibrium scenario

Anisotropic flow and thermalization at RHIC

- On the theoretical side...
 - bottom-up approaches cannot accommodate short thermalization times

new mechanisms are emerging, but their outcome is unclear

- What do the data tell us? Conflicting interpretations of Au–Au measurements!
 - early thermalization, which allows one to use hydrodynamics

 $\mathbf{v}_{2}(p_{t})$, spectra

 incomplete thermalization, which manifests itself by the breakdown of several scaling laws of hydro

 $v_2(y), v_2(E_{\text{beam}}), v_4/(v_2)^2$

The use of hydrodynamics at RHIC may have been too simplistic... $v_2(p_t)$ for various centralities STAR Collaboration, PRC 72 (2005) 014904

The use of hydrodynamics at RHIC may have been too simplistic... $v_2(p_t)$ for various centralities STAR Collaboration, PRC 72 (2005) 014904

In hydrodynamical fits, the speed of sound is constrained by p_t spectra, which require a soft equation of state

 \rightarrow with a hard equation of state, the energy per particle is too high

All relies on the assumption that the energy per particle is related to the density, i.e., that chemical equilibrium is maintained

- Chemical equilibrium is more fragile than kinetic equilibrium
- the only experimental indication of chemical equilibrium is in the particle-abundance ratios (cf. however $e^+e^-...$)

If there is no chemical equilibrium, energy per particle and density are independent variables, as in ordinary thermodynamics

there is no constraint on the equation of state from p_t spectra: one can consider a larger c_s to increase v_2 in central collisions

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, nucl-th/0511046

- Assume a quickly equilibrated, perfect liquid
- Vary the initial conditions of its hydro evolution
 - quasi-Gaussian in rapidity
 - CGC
- $\Rightarrow v_2(\eta)$ is not reproduced

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, nucl-th/0511046

- Assume a quickly equilibrated, perfect liquid
- Vary the initial conditions of its hydro evolution
 - <u>quasi-Gaussian in rapidity</u>
 CGC
- $\Rightarrow v_2(\eta)$ is not reproduced
- Invoke "hadronic dissipation"
 to explain the discrepancy between hydro and data

→ modeled by hadronic cascade

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, nucl-th/0511046

- Assume a quickly equilibrated, perfect liquid
- Vary the initial conditions of its hydro evolution
 - quasi-Gaussian in rapidity
- $\blacktriangleright \Rightarrow v_2(\eta)$ is not reproduced
- Invoke "hadronic dissipation"
 to explain the discrepancy between hydro and data

→ modeled by hadronic cascade

Hints of incomplete thermalization in RHIC data

A wealth of experimental measurements on anisotropic flow is already available from RHIC, and much more will come.

But these data still await a <u>consistent</u> quantitative interpretation: a model which aims at describing v_2 should simultaneously explain v_4 ! (not to mention fancier effects: Mach cone...)

Assuming that thermalization is incomplete at the time when flow develops gives a qualitative explanation of several features observed in the data (which do not come out naturally in a perfect-liquid picture).

Hopefully, this qualitative agreement may turn into a quantitative one, yielding information on the created medium: viscosity, other transport coefficients.

Cu–Cu collisions at RHIC: anisotropic flow

Gang Wang (STAR Collaboration) @ QM'05:

Measurements with different methods give very different v_2 values (not a surprise...)

Wait and see!