Anisotropic flow: lessons from RHIC and perspectives for LHC

Nicolas BORGHINI

Anisotropic flow at RHIC and prospects for LHC

- Anisotropic flow at RHIC
 - An experimental success story
 - A wealth of data
 - As of end of November 2005, 13 PRL & 4 PRC
 - Theoretical challenges
 - Conflicting interpretations of the data:
 hydrodynamic expansion vs. out-of-equilibrium scenario
- Anisotropic flow at LHC
 - Very few theoretical predictions...
 - ... yet measuring flow with ALICE should be "easy"

Anisotropic flow at RHIC and prospects for LHC

- Anisotropic flow at RHIC
 - An experimental success story
 - A wealth of data with novel directions
 - Solution As of February 1st, 2007, 15 PRL & 5 PRC
 - Theoretical challenges

+ 5 preprints

- Conflicting interpretations of the data:
 hydrodynamic expansion vs. out-of-equilibrium scenario
- Anisotropic flow at LHC
 - Very few theoretical predictions... Nihil novum sub sole
 - ... but we can build on RHIC results!

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)

⇒ anisotropic pressure gradients (larger along the impact parameter)

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)

⇒ anisotropic pressure gradients (larger along the impact parameter) push

⇒ anisotropic fluid velocities anisotropic emission of particles:

"anisotropic collective flow"

2nd ALICE Physics Week, Münster, February 12–16, 2007

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)

 $\Rightarrow anisotropic pressure gradients$ (larger along the impact parameter)push

⇒ anisotropic fluid velocities anisotropic emission of particles: "anisotropic collective flow"

 $E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} \propto \frac{\mathrm{d}N}{p_T \,\mathrm{d}\, p_T \,\mathrm{d}\, y} \left[1 + 2\,\mathbf{v}_1 \cos\left(\varphi - \Phi_R\right) + 2\,\mathbf{v}_2 \cos 2(\varphi - \Phi_R) + \cdots\right]$

2nd ALICE Physics Week, Münster, February 12–16, 2007

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)

 $\Rightarrow anisotropic pressure gradients$ (larger along the impact parameter)push

⇒ anisotropic fluid velocities anisotropic emission of particles: "anisotropic collective flow"

 $E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} \propto \frac{\mathrm{d}N}{p_T \,\mathrm{d}p_T \,\mathrm{d}y} \left[1 + 2 \,\mathbf{v}_1 \cos\left(\varphi - \Phi_R\right) + 2 \,\mathbf{v}_2 \cos 2(\varphi - \Phi_R) + \cdots\right]$

More particles along the impact parameter ($\varphi - \Phi_R = 0 \text{ or } 180^\circ$) than perpendicular to it \mathbb{R} "elliptic flow" $v_2 \equiv \langle \cos 2(\varphi - \Phi_R) \rangle > 0$. average over particles

"Flow", v_n do not imply fluid dynamics...

(Transverse) anisotropy of the source in a non-central collision

 \Rightarrow the amount of matter seen by a high- p_T particle traversing the medium is anisotropic (shorter path along the impact parameter)

 \Rightarrow anisotropic jet quenching: anisotropic distribution of high- p_T particles

which is best characterized in terms of Fourier harmonics v_n (detector independent; more robust in Monte-Carlo computations)

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – 3/25

Elliptic flow v_2 varies with (pseudo)rapidity

(note: $v_2(\eta) \simeq v_2(y)$)

Elliptic flow v_2 varies with (pseudo)rapidity w = "limiting fragmentation"

The v_2 of charged hadrons grows linearly with transverse momentum

The v_2 of charged hadrons grows linearly with transverse momentum

The v_2 of charged hadrons grows linearly with p_T , then saturates

The $v_2(p_T)$ of identified hadrons show mass ordering

At a given transverse momentum, heavier hadrons have a smaller v_2

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – 9/25

The $v_2(p_T)$ of identified hadrons show mass ordering below 1.5 GeV/c

Above, the ordering no longer holds

2nd ALICE Physics Week, Münster, February 12–16, 2007

Above 2 GeV/c there seems to be a baryon vs. meson splitting of $v_2(p_T)$

2nd ALICE Physics Week, Münster, February 12–16, 2007

(Various) number-of-constituent-quark scalings can be identified

- The p_T -integrated elliptic flow $v_2(\eta)$ shows extended longitudinal scaling ("limiting fragmentation") from $\sqrt{s_{_{NN}}} = 20$ to 200 GeV
- At mid-rapidity, the $v_2(p_T)$ of charged hadrons first rises linearly up to $p_T \simeq$ 2 GeV/c, then saturates
 - a in the linear-rise region the slope increases with impact parameter
- The $v_2(p_T)$ of identified hadrons at mid-rapidity
 - a show mass ordering for $p_T \lesssim$ 1.5 GeV/c
 - seem to scale with the number of constituent quarks above that

$$\longrightarrow \frac{1}{n_q} v_2\left(\frac{p_T}{m}\right)$$
 , $\frac{1}{n_q} v_2\left(\frac{KE_T}{m}\right)$?

2nd ALICE Physics Week, Münster, February 12–16, 2007

Will the extended longitudinal scaling of the p_T -integrated elliptic flow $v_2(\eta)$ persist?

Will the extended longitudinal scaling of the p_T -integrated elliptic flow $v_2(\eta)$ persist? $v_2(\eta = 0) \approx 0.08$

Will the extended longitudinal scaling of the p_T -integrated elliptic flow $v_2(\eta)$ persist? If $v_2(\eta = 0) \approx 0.08$

Will the linear rise with $\ln \sqrt{s_{NN}}$ of the p_T -integrated elliptic flow at midrapidity $v_2(\eta = 0)$ persist?

What if the extended longitudinal scaling of the p_T -integrated elliptic flow $v_2(\eta)$ persist?

• $v_2(\eta = 0) \approx 0.08$ FF present ideal-fluid dynamics approaches will need some revisiting

• the scaling will have to be taken seriously!

What if the extended longitudinal scaling of the p_T -integrated elliptic flow $v_2(\eta)$ persist?

• $v_2(\eta = 0) \approx 0.08$ FF present ideal-fluid dynamics approaches will need some revisiting

• the scaling will have to be taken seriously!

Up to now, only one attempt^{*} at explaining it, as reflecting the absence of (kinetic) equilibrium of the matter created in the collision:

longitudinal scaling of
$$\frac{\mathrm{d}N}{\mathrm{d}y} \Rightarrow \text{longitudinal scaling of } v_2(y)$$

* three miserable lines in Eur. Phys. J. A 29 (2006) 27

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini — 16/25

How does anisotropic flow depend on the number ${\cal N}$ of collisions undergone by particles?

How does anisotropic flow depend on the number \mathcal{N} of collisions undergone by particles?

In the absence of rescatterings ("gas"), no flow develops.

2nd ALICE Physics Week, Münster, February 12–16, 2007

How does anisotropic flow depend on the number \mathcal{N} of collisions undergone by particles?

♦ In the absence of rescatterings ("gas"), no flow develops.

♦ The more collisions, the larger the flow.

 v_2 absence of equilibrium: v_2 varies with \mathcal{N}

2nd ALICE Physics Week, Münster, February 12-16, 2007

N.Borghini – 17/25

How does anisotropic flow depend on the number ${\cal N}$ of collisions undergone by particles?

♦ In the absence of rescatterings ("gas"), no flow develops.

♦ The more collisions, the larger the flow.

 \blacklozenge For a given number of collisions, the system thermalizes: further collisions no longer increase v_2 .

How does anisotropic flow depend on the number \mathcal{N} of collisions undergone by particles?

♦ In the absence of rescatterings ("gas"), no flow develops.

♦ The more collisions, the larger the flow.

 \blacklozenge For a given number of collisions, the system thermalizes: further collisions no longer increase v_2 .

At RHIC, the $v_2(p_T)$ of charged hadrons at mid-rapidity first rises linearly up to $p_T \simeq 2$ GeV/c

• How does the slope of $v_2(p_T)$ at a given centrality evolve with $\sqrt{s_{_{NN}}}$?

STAR

The v_2 data for pions and kaons at 62.4 GeV tends to be about 5% smaller than the 200 GeV data (although at $p_T > 1$ GeV/c the difference is within systematic uncertainties). The anti-proton data at 62.4 and 200 GeV are consistent within errors. The data exclude a proton v_2 variation between 62.4 and 200 GeV greater than approximately 15%.

Appreciable differences are seen between the $17.3~{\rm GeV}$ and $62.4~{\rm GeV}$ data.

(slight disagreement)

What drives the increase of the p_T -integrated v_2 ? The rise in $\langle p_T \rangle$?

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini - 18/25

At RHIC, the $v_2(p_T)$ of charged hadrons at mid-rapidity first rises linearly up to $p_T \simeq 2$ GeV/c, then saturates.

• How does the slope of $v_2(p_T)$ at a given centrality evolve with $\sqrt{s_{_{NN}}}$? Im What drives the increase of the p_T -integrated v_2 ?

• How does the position of the breaking point in the $v_2(p_T)$ shape evolve? (with centrality, with $\sqrt{s_{_{NN}}}$)

W "natural" expectation: the p_T of the breaking point should increase with centrality, with $\sqrt{s_{NN}}$, and with the size of the colliding nuclei, and decrease with rapidity

(It is far from obvious that the PHENIX data support this expectation)

* has to be defined properly...

Universität Bielefeld

N.Borghini — 19/25

At SPS and RHIC the $v_2(p_T)$ of identified hadrons at mid-rapidity show mass ordering for $p_T \lesssim 1.5$ GeV/c... and that should persist at LHC!

• Will the ordering be in quantitative agreement with hydro? All slow particles $(p_T/m < \max \text{ fluid velocity})$ have the same $v_n\left(\frac{p_T}{m}, y\right)$ since they originate from the same fluid cell; for fast particles, $v_2(p_T) \propto (p_T - m_T v_{\max})$. PLB 642 (2006) 227 Qualitative agreement is not satisfactory... If (!) hydrodynamics is the

Qualitative agreement is not satisfactory... If (!) hydrodynamics is the large-number-of-collisions limit of the out-of-equilibrium case, then not too far from equilibrium, the mass ordering should already be present.

see QGSM: PLB 631 (2005) 109 and RQMD/UrQMD: JPG 32 (2006) 1121

At SPS and RHIC the $v_2(p_T)$ of identified hadrons at mid-rapidity show mass ordering for $p_T \lesssim 1.5$ GeV/c... and that should persist at LHC!

• Will the ordering be in quantitative agreement with hydro? All slow particles $(p_T/m < \max \text{ fluid velocity})$ have the same $v_n\left(\frac{p_T}{m}, y\right)$ since they originate from the same fluid cell; for fast particles, $v_2(p_T) \propto (p_T - m_T v_{\max})$. PLB 642 (2006) 227

• Till which p_T does the ordering hold? (same expectations as above: the position should increase with centrality, with $\sqrt{s_{NN}}$, and with the size of the colliding nuclei, and decrease with rapidity)

2nd ALICE Physics Week, Münster, February 12–16, 2007

At SPS and RHIC the $v_2(p_T)$ of identified hadrons at mid-rapidity show mass ordering for $p_T \lesssim 1.5$ GeV/c... and that should persist at LHC!

• Will the ordering be in quantitative agreement with hydro? All slow particles $(p_T/m < \max \text{ fluid velocity})$ have the same $v_n\left(\frac{p_T}{m}, y\right)$ since they originate from the same fluid cell; for fast particles, $v_2(p_T) \propto (p_T - m_T v_{\max})$. PLB 642 (2006) 227

• Till which p_T does the ordering hold? (same expectations as above: the position should increase with centrality, with $\sqrt{s_{NN}}$, and with the size of the colliding nuclei, and decrease with rapidity)

What happens above the mass-ordering region? number-of-constituent-quark scaling?

2nd ALICE Physics Week, Münster, February 12–16, 2007

Universität Bielefeld

N.Borghini – 20/25

PHOBOS and STAR (+ theorists) have made huge progress in demonstrating the importance of fluctuations, in particular when comparing collisions with different centralities.

• Old vision: one should compare v_2/ϵ (which is constant in hydro) "geometrical" eccentricity

(ellipsis with the shorter axis along the impact parameter)

The nuclei cross each other fast: the nucleons in the overlap region are frozen in a configuration that differs from the geometrical picture (and varies from event to event)

IF the proper scaling is rather with the "participant eccentricity" ϵ_{part}

Universität Bielefeld

Anisotropic flow: from RHIC to LHC

The p_T -integrated directed flow $v_1(\eta)$ shows extended longitudinal scaling ("limiting fragmentation") from $\sqrt{s_{NN}} = 20$ to 200 GeV...

... but that cannot be true over the whole y range ($v_1(y=0)=0$), Unless v_1 vanishes in an extended region! Yet, expect a very small v_1 up to $y \approx 5$ at LHC.

2nd ALICE Physics Week, Münster, February 12–16, 2007

Anisotropic flow: from RHIC to LHC

STAR has also measured the fourth anisotropic-flow harmonic v_4 , as a function of p_T , y, particle type, at $\sqrt{s_{_{NN}}} = 62.4$ and 200 GeV cf. Raimond Snellings in a few moments

Within ideal-fluid dynamics prediction, to leading order in the fluidvelocity anisotropies, $v_4(p_T, y) = \frac{1}{2}v_2(p_T, y)^2$ for each type of fast particle. PLB 642 (2006) 227

Whereas in the out-of-equilibrium scenario v_2 , v_4 are proportional to the number of collisions $\mathcal{N} \Rightarrow \frac{v_4}{v_2^2} \propto \frac{1}{\mathcal{N}}$, minimum at equilibrium. In the non-equilibrium scenario $\frac{v_4(p_T, y)}{v_2(p_T, y)^2} > \frac{1}{2}$ (\approx 1.2 at RHIC).

Expect a smaller
$$rac{v_4}{v_2^2}$$
 at LHC... (but v_4 will still be sizable)

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – 24/25

Anisotropic flow: "questions for LHC

- Extended longitudinal scaling of the p_T -integrated elliptic flow?
- a If the $v_2(p_T)$ of charged hadrons at mid-rapidity rises linearly at low transverse momentum
 - how does the slope compare to lower beam energies?
 - where does the linear rise stop? Systematics wanted.
 - does $v_2(p_T)$ goes down to 0 at some (high p_T) point?
- Regarding the $v_2(p_T)$ of identified hadrons at mid-rapidity • mass ordering at low p_T ? (Quantitative results wanted!) Till where?
 - (not mentioned here): $v_2(p_T)$ of charm / beauty?
- v_4 will also be instructive! (at least, if theorists care...)

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – 25/25

Extra slides

Anisotropic flow: p_T -dependence

The "natural" expectation is that the p_T of the breaking point in the $v_2(p_T)$ shape should increase with centrality, with $\sqrt{s_{_{NN}}}$, and with the size of the colliding nuclei, and decrease with rapidity

Heavy-ion collisions: fluid-dynamics description

At freeze-out, each fluid cell emits particles according to thermal distributions (Bose-Einstein, Fermi-Dirac):

$$E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} = C \int_{\Sigma} \exp\left(-\frac{p^{\mu} u_{\mu}(x)}{T_{\mathrm{f.o.}}}\right) p^{\mu} \mathrm{d}\sigma_{\mu}$$

Heavy-ion collisions: fluid-dynamics description

At freeze-out, each fluid cell emits particles according to thermal distributions (Bose-Einstein, Fermi-Dirac):

freeze-out hypersurface -

 $E \frac{\mathrm{d}N}{\mathrm{d}^{3}\mathrm{p}} = C \int_{\Sigma} \exp\left(-\frac{p^{\mu}u_{\mu}(x)}{T_{\mathrm{f.o.}}}\right) p^{\mu} \mathrm{d}\sigma_{\mu}$ Surface particle momentum

Heavy-ion collisions: fluid-dynamics description

At freeze-out, each fluid cell emits particles according to thermal distributions (Bose-Einstein, Fermi-Dirac):

 $E\frac{\mathrm{d}N}{\mathrm{d}^{3}\mathbf{p}} = C\int_{\Sigma} \exp\left(-\frac{p^{\mu}u_{\mu}(x)}{T_{\mathrm{f.o.}}}\right) p^{\mu} \mathrm{d}\sigma_{\mu}$ freeze-out hypersurface particle momentum

A consistent ideal-hydrodynamics picture requires that $T_{\rm f.o.} \ll T_{\rm in.}$

 \Leftrightarrow ideal-fluid limit = small- $T_{f.o.}$ limit

me can compute the particle distribution in a model-independent, analytic way (using a saddle-point approximation).

N.Borghini, J.-Y.Ollitrault PLB 642 (2006) 227

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – E2 Universität Bielefeld

Slow particles $(p_T/m < u_{\max}(\frac{\pi}{2}))$ move together with the fluid.

There exists a fluid cell whose velocity equals the particle velocity: minimizes $p^{\mu}u_{\mu}$.

Integrand in the Cooper-Frye spectrum is Gaussian, with width $\propto 1/\min(\sqrt{p^{\mu}u_{\mu}}) = 1/\sqrt{m}$. \longrightarrow saddle-point approximation!

Slow particles $(p_T/m < u_{\max}(\frac{\pi}{2}))$ move together with the fluid.

There exists a fluid cell whose velocity equals the particle velocity: minimizes $p^{\mu}u_{\mu}$.

Integrand in the Cooper-Frye spectrum is Gaussian, with width $\propto 1/\min(\sqrt{p^{\mu}u_{\mu}}) = 1/\sqrt{m}$. \longrightarrow saddle-point approximation!

N.Borghini – E3

Universität Bielefeld

Similar momentum distributions for different particles

$$E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} = c^h(m) f\left(\frac{p_T}{m}, y, \varphi\right)$$

• $v_n\left(\frac{p_T}{m}, y\right)$ identical for all particles!
 \Rightarrow mass-ordering of $v_2(p_T, y)$, $\frac{v_4}{v_2^2}\left(\frac{p_T}{m}, y\right)$ universal

Slow particles $(p_T/m < u_{\max}(rac{\pi}{2}))$ move together with the fluid.

There exists a fluid cell whose velocity equals the particle velocity: minimizes $p^{\mu}u_{\mu}$.

For Integrand in the Cooper-Frye spectrum is Gaussian, with width $\propto 1/\min(\sqrt{p^{\mu}u_{\mu}}) = 1/\sqrt{m}$.

saddle-point approximation!

 $m \gg T_{\rm f.o.}$

Similar momentum distributions for different particles

$$E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} = c^h(m) f\left(\frac{p_T}{m}, y, \varphi\right)$$

• $v_n\left(\frac{p_T}{m}, y\right)$ identical for all particles! \Rightarrow mass-ordering of $v_2(p_T, y)$, $\frac{v_4}{v_2^2}\left(\frac{p_T}{m}, y\right)$ universal

2nd ALICE Physics Week, Münster, February 12-16, 2007

N.Borghini – E3 Universität Bielefeld

(Fast particles) ($p_T/m > u_{max}(0)$) move faster than the fluid.

Such a particle was emitted by a cell along the direction of its velocity where the fluid is fastest (often, close to the edge of the fluid).

Saddle-point expansion of the Cooper-Frye formula around the minimum of $p^{\mu}u_{\mu}$.

(Fast particles) ($p_T/m > u_{max}(0)$) move faster than the fluid.

Such a particle was emitted by a cell along the direction of its velocity where the fluid is fastest (often, close to the edge of the fluid).

Saddle-point expansion of the Cooper-Frye formula around the minimum of $p^{\mu}u_{\mu}$.

check the domain of validity!

(Fast particles) ($p_T/m > u_{max}(0)$) move faster than the fluid.

2nd ALICE Physics Week, Münster, February 12–16, 2007

N.Borghini – E4