Statistical description of the initial state fluctuations and mode-by-mode dynamical evolution

Nicolas BORGHINI

QCD challenges from pp to AA collisions, Münster, September 2-6, 2024

Statistical description of the initial state fluctuations & mode-by-mode dynamical evolution

- Statistical description of the initial state fluctuations
 - Generic idea: average state and fluctuation modes
 - Second Examples of application
- Mode-by-mode dynamical evolution
- Outlook

N.Borghini

N.B., M.Borrell, N.Feld, H.Roch, S.Schlichting, C.Werthmann, PRC **107** (2023) 034905 N.B., H.Roch, A.Schütte, arXiv:2402.07888 R.Krupczak, N.B., H.Roch, in preparation

Thanks to Renata for many plots!

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 1/40

Statistical description of the initial state fluctuations & mode-by-mode dynamical evolution

Statistical description of the initial state fluctuations

- Generic idea: average state and fluctuation modes
- Second Examples of application

Mode-by-mode dynamical evolution

Outlook

N.Borghini

N.B., M.Borrell, N.Feld, H.Roch, S.Schlichting, C.Werthmann, PRC **107** (2023) 034905 N.B., H.Roch, A.Schütte, arXiv:2402.07888 R.Krupczak, N.B., H.Roch, in preparation

Thanks to Renata for many plots!

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 1/40

- Take your favorite model, with event-by-event fluctuations, for the initial state of a nuclear collision:
 - MCGlauber [used in PRC 107 (2023) 034905 & work(s) in preparation]
 - Saturation-based [used in PRC 107 (2023) 034905]
 - T_RENTO, IP-Glasma, EKRT, Jazma, McDIPPER...

N.Borghini

Toy model with independent hot spots [used in arXiv:2402.07888].

In principle 2D or 3D, energy or entropy density (or whole $T^{\mu\nu}$), with or without conserved charges.

Examples shown in the following are 2D-energy density profiles, mostly from a nucleon-based MCGlauber.

What about dynamical initializations [SMASH, models with excited strings]?

- Take your favorite model, with event-by-event fluctuations, for the initial state of a nuclear collision
- $\$ and generate a (large) set of initial states $\{\Phi^{(i)}({\bf x})\}$ "under the same conditions"
 - same colliding system at fixed collision energy!
 Image hereafter, mostly Pb-Pb @ 5.02 TeV
 - © collisions at fixed impact parameter [PRC 107 (2023) 034905]
 - or within a given centrality class [in prep.]

N.Borghini

In the or with a fixed average geometry [arXiv:2402.07888].

- Take your favorite model, with event-by-event fluctuations, for the initial state of a nuclear collision
- Solution and generate a (large) set of initial states { $\Phi^{(i)}(\mathbf{x})$ } "under the same conditions" I № N_{ev} = 2²¹ per run in our simulations.

Here: transverse plane discretized on a grid with $N_{\rm s}$ x $N_{\rm s}$ = 192 x 192 points, with a grid spacing of \approx 0.11 fm.

N.Borghini

From the $N_{\rm ev}$ initial states $\{\Phi^{(i)}(\mathbf{x})\}$

• compute the "average initial state" $\bar{\Psi}(\mathbf{x}) \equiv \frac{1}{N_{\mathrm{ev}}} \sum_{i} \Phi^{(i)}(\mathbf{x})$

(Almost) rotationally symmetric.

N.Borghini

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 5/40

From the $N_{\rm ev}$ initial states $\{\Phi^{(i)}(\mathbf{x})\}$

N.Borghini

• compute the "average initial state" $\bar{\Psi}(\mathbf{x}) \equiv \frac{1}{N_{\mathrm{ev}}} \sum_{i} \Phi^{(i)}(\mathbf{x})$

Image A random initial state may be seen as a random fluctuation about this average state:

$$\Phi^{(i)}(\mathbf{x}) = \bar{\Psi}(\mathbf{x}) + \delta \Phi^{(i)}(\mathbf{x})$$

The goal is now to characterize the fluctuating parts $\{\delta \Phi^{(i)}(\mathbf{x})\}$.

From the $N_{\rm ev}$ initial states $\{\Phi^{(i)}(\mathbf{x})\}$

- compute the "average initial state" $\bar{\Psi}(\mathbf{x}) \equiv \frac{1}{N_{\mathrm{ev}}} \sum_{i} \Phi^{(i)}(\mathbf{x})$
- and a basis of **unnormalized**, orthogonal "fluctuation modes" $\{\Psi_l(\mathbf{x})\}$ such that the expansion coefficients $\{c_l^{(i)}\}$ of the fluctuations

$$\Phi^{(i)}(\mathbf{x}) = \bar{\Psi}(\mathbf{x}) + \delta \Phi^{(i)}(\mathbf{x}) = \bar{\Psi}(\mathbf{x}) + \sum_{l} c_{l}^{(i)} \Psi_{l}(\mathbf{x})$$

satisfy $\langle c_l^{(i)} \rangle = 0$ and $\langle c_l^{(i)} c_m^{(i)} \rangle = \delta_{lm}$ where $\langle ... \rangle$ denotes the average over initial states.

Note: $\overline{\Psi}(\mathbf{x})$ is **not** one of the basis vectors.

N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024

Determining the fluctuation modes

One can show [see PRC 107 (2023) 034905] that they are eigenvectors to the autocorrelation function of the initial-state fluctuations:

$$\begin{split} \rho(\mathbf{x}, \mathbf{y}) &\equiv \frac{1}{N_{\text{ev}}} \sum_{i} \delta \Phi^{(i)}(\mathbf{x}) \delta \Phi^{(i)}(\mathbf{y}) \\ &= \frac{1}{N_{\text{ev}}} \sum_{i} \Phi^{(i)}(\mathbf{x}) \Phi^{(i)}(\mathbf{y}) - \bar{\Psi}(\mathbf{x}) \bar{\Psi}(\mathbf{y}) \end{split}$$

IF Numerically, one has to diagonalize a big matrix:

N.Borghini

 $(N_{\rm fields} \cdot N_{\rm points}) \times (N_{\rm fields} \cdot N_{\rm points})$

8/40

In our calculations $N_{\text{fields}} = 1$ (energy density), $N_{\text{points}} = 192^2$ (2D grid), so we diagonalize a $192^2 \times 192^2$ -matrix: $\mathcal{O}(1 \text{ day})$ (for each run).

But when it's done, you get nice plots for your paper / thesis!

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024

Determining the fluctuation modes

One can show [see PRC 107 (2023) 034905] that they are eigenvectors to the autocorrelation function of the initial-state fluctuations:

$$\begin{split} \rho(\mathbf{x}, \mathbf{y}) &\equiv \frac{1}{N_{\text{ev}}} \sum_{i} \delta \Phi^{(i)}(\mathbf{x}) \delta \Phi^{(i)}(\mathbf{y}) \\ &= \frac{1}{N_{\text{ev}}} \sum_{i} \Phi^{(i)}(\mathbf{x}) \Phi^{(i)}(\mathbf{y}) - \bar{\Psi}(\mathbf{x}) \bar{\Psi}(\mathbf{y}) \end{split}$$

IF Numerically, one has to diagonalize a big matrix:

eigenvectors $\sim \rightarrow \rightarrow$ fluctuation modes $\{\Psi_l(\mathbf{x})\}$

N.Borghini

eigenvalues $\lambda_l \longrightarrow$ strength / importance of the modes

From now on, the subscript l reflects the mode strength, i.e. the $\{\Psi_l\}$ are sorted by decreasing λ_l .

Remark on the normalization of the fluctuation modes

Slide 7:
$$\Phi^{(i)}(\mathbf{x}) = \bar{\Psi}(\mathbf{x}) + \sum_l c_l^{(i)} \Psi_l(\mathbf{x})$$
 with $\langle c_l^{(i)} c_m^{(i)} \rangle = \delta_{lm}$

IF The amplitude of the fluctuations of the expansion coefficients c_l is (arbitrarily) fixed to unity for all modes [see slide 16].

But $\Phi^{(i)}(\mathbf{x})$ has a physical dimension (e.g.: energy density).

N.Borghini

- \Rightarrow The $\{\Psi_l(\mathbf{x})\}$ must carry that dim., and cannot be normalized to 1!
- Slide 9: eigenvalues $\lambda_l \longrightarrow$ strength / importance of the modes reactually, one has $\lambda_l = \int [\Psi_l(\mathbf{x})]^2 d^2 \mathbf{x} \equiv \|\Psi_l\|^2$

If you prefer, you may work with normalized fluctuation modes, yet in that case the fluctuations of the c_l cannot be unity.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 10/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

	•		×		\times	\star	0	•	•	
*	*)8(\oplus	*	*)\$(0	業	- 0.04
彩	٠	())		÷)8(*	- 0.02
	0					쵏	繱			- 0.00
٢								藏		0.0

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 11/40

Eigenvalues

N.Borghini

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 12/40

Eigenvalues / relative weights

Is there any information in the slope of the spectrum? Yes there is! Use (toy) 2D-model* with independent sources ("hot spots") distributed randomly according to predetermined distribution (here: Gaussian). "Independent Hot Spot Model"

One can then compare the spectra obtained in runs with:

- In different (fixed) numbers of hot spots $N_{\rm src}$
- \odot different (fixed) source sizes $\sigma_{\rm src}$

N.Borghini

 \odot and more (different source weights, fluctuating $N_{
m src}$ or $\sigma_{
m src}$... not shown).

In the next two slides, runs labeled IHSM $_{N_{
m src}}^{\sigma_{
m src}}$ with $\sigma_{
m src}$ in fm.

* long history: Bhalerao & Ollitrault, PLB **641** (2006) 260; Bhalerao, Luzum & Ollitrault, PRC **84** (2011) 024910; Bzdak, Bożek & McLerran, NPA **927** (2014) 15; Başar & Teaney, PRC **90** (2014) 054903; Bzdak & Skokov, NPA **943** (2015) 1; Blaizot, Broniowski & Ollitrault, PRC **90** (2014) 034906; ...

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 13/40

Independent hot spot model

N.B., H.Roch, A.Schütte, arXiv:2402.07888

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 14/40

N.Borghini

Independent hot spot model

Relative weights (label: IHSM $_{N_{src}}^{\sigma_{src}}$) 10^{-1} $\text{IHSM}_{50}^{0.7}$ $HSM_{50}^{0.3}$ $\text{IHSM}_{750}^{0.3}$ \bigcirc pointlike \times IHSM^{0.0}₂₅₀ \triangleright IHSM^{0.3}₂₅₀ $\text{IHSM}_{250}^{0.7}$ ☆ sources $\text{IHSM}_{750}^{0.7}$ Δ 10^{-2} m_l 10^{-3} $N_{
m src}$ is irrelevant, only $\sigma_{
m src}$ matters! (almost) degenerate modes! 255075100 125 $\mathbf{0}$

N.B., H.Roch, A.Schütte, arXiv:2402.07888

Next step: turn on (controlled) correlations between hot spots...

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 15/40

Statistics of the expansion coefficients

... for a sample of 2¹⁵ Pb-Pb events

Almost Gaussian statistics, with unit variance (by construction!).

N.Borghini

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 16/40

Statistics of the expansion coefficients

- One can also check (backup slide) that the covariances $\langle c_l c_m \rangle$ are small for $l \neq m$ is the fluctuation modes are uncorrelated.
- Sut some of the 3-point correlations $\langle c_k c_l c_m \rangle$ are non-zero (not yet systematically investigated; nor higher orders).
 - is the fluctuation modes are not statistically independent.

N.Borghini

Back to the eigenvectors (normalized)

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(MCGlauber, fixed impact-parameter direction)

	•		×		\times	\ast	0	•	•	
×	*)8(\oplus	*	*) \$<		0	業	- 0.04
彩	٠	())		÷)8(- 0.02
	0					濑	藗			- 0.00 0.02
										0.04

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 18/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

	•		×		\times	*	\bigcirc	3	•	
×	*		\oplus	*	*	*		\bigcirc	*	- 0.04
*	Som sym	ie mode metry	es have as the	e the s averaç	ame <mark>ro</mark> ge initi	otationa al state			*	- 0.02
						濑	獭			0.02
								濑		0.04

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 18/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

					*	\star	0	\bigcirc	(•)				
≍	*)8(*	*) &c		\bigcirc	業	- 0.04			
**		()	Some that s	some modes have a dipole structure, that should yield an ε_1 .									
鏉			They	often (come in	n deger	nerate	pairs.		0.02			
										0.04			
*													

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 19/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

	•		×				0	•	•	
×	*)8(\oplus	*	*	•8			*	- 0.04
彩	3	())8(- 0.02
*	0	18			and	e mode should	es look result	in an a	οιar, ε ₃ .	0.02
					Agai	n, dege				0.04

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024 21/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 22/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

	•		×		*	*	0	•	•	
*	Shap	eless, u	ugly?	*	*	*		\bigcirc	*	- 0.04
**	•	())8(- 0.02
*	0	18				繱	豢			- 0.00
										0.04
*								*		

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 23/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality

(nucleon-based MCGlauber, fixed impact-parameter direction)

R.Krupczak, N.B., H.Roch, in prep.

UNIVERSITÄT BIELEFELD N.Borghini

Influence of individual fluctuation modes on "observables"

Consider an arbitrary observable (from the theorist's point of view*) O_{α} . One can compute it for the average initial state $\overline{\Psi}(\mathbf{x})$:

 $O_{\alpha}(\bar{\Psi}) \equiv \bar{O}_{\alpha}$

and for the initial state $\Psi_l \equiv \bar{\Psi} + \xi \Psi_l$ for some (small) number ξ : $O_\alpha(\bar{\Psi} + \xi \Psi_l) \equiv O_{\alpha,l}^+$

 \odot If ξ is small enough, one has

N.Borghini

$$O_{\alpha}(\bar{\Psi} + \xi \Psi_l) = O_{\alpha}(\bar{\Psi}) + L_{\alpha,l}\xi + \frac{Q_{\alpha,ll}}{2}\xi^2 + \mathcal{O}(\xi^3)$$

with $L_{\alpha,l}$ and $Q_{\alpha,ll}$ appropriate (partial) derivatives.

* Final-state observables and initial- & final-state "computables"...

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024 24/40

Which initial-state observables?

Secontricities (using polar coordinates r, θ in the transverse plane):

$$\epsilon_{n,c}(\Phi) \equiv \frac{\int r^n \cos(n\theta) \Phi(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta}{\int r^n \, \Phi(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta} , \ \epsilon_{n,s}(\Phi) \equiv \frac{\int r^n \sin(n\theta) \Phi(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta}{\int r^n \, \Phi(r,\theta) \, r \, \mathrm{d}r \, \mathrm{d}\theta}$$

for $n \ge 2$ (special definition with factor r^3 for n = 1);

total energy (per unit rapidity);

mean square radius.

N.Borghini

Pb-Pb at 5.02 TeV, 0-2.5% centrality

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024 26/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients $L_{\alpha,l}$

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024 27/40

N.Borghini

Statistical description of the initial state fluctuations & mode-by-mode dynamical evolution

Statistical description of the initial state fluctuations

- Generic idea: average state and fluctuation modes
- Section 2018
 Section 2018
- Mode-by-mode dynamical evolution
- Outlook

N.Borghini

N.B., M.Borrell, N.Feld, H.Roch, S.Schlichting, C.Werthmann, PRC **107** (2023) 034905 N.B., H.Roch, A.Schütte, arXiv:2402.07888 R.Krupczak, N.B., H.Roch, in preparation

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 28/40

Dynamical evolution

Since we have initial states (2D energy densities at $\tau_0 = 0.2$ fm/c μ boost invariant system), we can let them evolve dynamically:

- If its with KØMPØST: pre-equilibrium stage until $\tau_{hydro} = 1 \text{ fm}/c$;
- Solution The matrix and the matrix and the matrix of the matrix of
- then we particlize:

N.Borghini

- either with MUSIC's Cooper-Frye implementation, including the subsequent decays of the free-streaming hadrons;
- or with iSS, after which we feed the hadrons into SMASH, where they may scatter.

IF Two kinds of possible final states: at the end of MUSIC (+ free streaming) or at the end of SMASH.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 29/40

Dynamical evolution

Since we have initial states (2D energy densities at $\tau_0 = 0.2$ fm/c μ boost invariant system), we can let them evolve dynamically:

- If its with KØMPØST: pre-equilibrium stage until $\tau_{hydro} = 1 \text{ fm}/c$;
- Solution The matrix and the mat
- then we particlize.

N.Borghini

In particular, we look at mode-by-mode evolution, and consider initial states of the form $\Psi_l \equiv \overline{\Psi} + \xi \Psi_l$, to study the influence of individual fluctuation modes on final-state observables.

Which final-state observables? For charged hadrons:

- multiplicity (per unit rapidity);
- average transverse momentum;

N.Borghini

• anisotropic flow coefficients: $v_{n,c} \equiv \langle \cos(n\phi_{\mathbf{p}}) \rangle$, $v_{n,s} \equiv \langle \sin(n\phi_{\mathbf{p}}) \rangle$ where $\langle \dots \rangle$ denotes the average over particles (not events, since we do mode-by-mode evolution).

Reminder from slide 24: the linear and quadratic response coefficients for a given observable O_{α} are defined such that

$$O_{\alpha}(\bar{\Psi} + \xi \Psi_l) = O_{\alpha}(\bar{\Psi}) + L_{\alpha,l}\xi + \frac{Q_{\alpha,ll}}{2}\xi^2 + \mathcal{O}(\xi^3)$$

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 30/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients $L_{\alpha,l}$ at the end of MUSIC (+ decays).

N.Borghini

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 31/40

Influence of individual fluctuation modes on "observables"

Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients $L_{\alpha,l}$ at the end of MUSIC (+ decays).

N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024

32/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality; quadratic-response coefficients $Q_{\alpha,ll}$ at the end of MUSIC (+ decays).

N.Borghini

R.Krupczak, N.B., H.Roch, in prep.

QCD challenges from pp to AA collisions, Münster, Sept.2-6, 2024 33/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients $L_{\alpha,l}$ at the end of MUSIC + iSS + SMASH.

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 34/40

Pb-Pb at 5.02 TeV, 0-2.5% centrality; linear-response coefficients $L_{\alpha,l}$ at the end of MUSIC + iSS + SMASH.

N.Borghini

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 34/40

Noncentral events: average initial state

Pb-Pb at 5.02 TeV, 30-40% centrality (MCGlauber, fixed impact-parameter direction)

R.Krupczak, N.B., H.Roch, in prep.

LEFELD N.Borghini QCD challenges

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 35/40

Fluctuation modes (normalized)

Pb-Pb at 5.02 TeV, 30-40% centrality

(MCGlauber, fixed impact-parameter direction)

	•	:	••	**	•1•	•	*		•	
			•				(0)	***	>**	- 0.04
	۲				-);;;-		•)))((=		•)))((•	- 0.02
((0))	*					>				0.02
					(((()))					0.04
•)))))((•										

R.Krupczak, N.B., H.Roch, in prep.

BIELEFELD Fakultät für Physik

Pb-Pb at 5.02 TeV, 30-40% centrality; linear-response coefficients $L_{\alpha,l}$

N.Borghini

ultät für Physil

R.Krupczak, N.B., H.Roch, in prep.

37/40

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024

Fluctuation modes (normalized)

Pb-Pb at 5.02 TeV, 30-40% centrality

(MCGlauber, fixed impact-parameter direction)

R.Krupczak, N.B., H.Roch, in prep.

UNIVERSITÄT BIELEFELD Fakultät für Physik

Statistical description of the initial state fluctuations & mode-by-mode dynamical evolution

- Statistical description of the initial state fluctuations
 - Sice application of linear algebra
 - But computation of the modes can be expansive
- Mode-by-mode dynamical evolution

N.Borghini

- Pre-equilibrium + fluid dynamics is works well
- When adding a hadronic afterburner, extra statistical noise has to be overcome (by the end of this week?).

Questions / Ideas / Outlook

How does the statistical analysis of initial-state fluctuations help?

- (Dream?) To define a distance between initial-state models?
- Show From the response coefficients, one can compute the (co)variances of observables (e.g.: with linear coefs, covariances at order c_l^2)

Extensions

N.Borghini

- Other systems (e.g.: B.Bachmann, MSc thesis on Ru+Ru vs. Zr+Zr at 200 GeV)
- More final-state observables (Dream: "golden observables", due to very few modes is reverse engineering)
- Going 3D; adding conserved charges
- Inclusion of further effects in toy hot-spot model

Extra slides

Statistics of the expansion coefficients

One can check that the covariances $\langle c_l c_m \rangle$ are small for $l \neq m$.
Image: matrix example in the Independent Hot Spot Model: IHSM^{0.3}₅₀

N.B., H.Roch, A.Schütte, arXiv:2402.07888

Noise in observables in the final state of mode-by-mode dynamics

Linear-response coefficients $L_{\alpha,l}$ at the end of MUSIC + iSS + SMASH.

N.Borghini

Do we understand where this order of magnitude comes from? YES!

• Each initial state $\overline{\Psi} + \xi \Psi_l$ leads to a freeze-out hypersurface, from which we produce 1000 SMASH oversamplings, with about 2000 particles (central events).

• All in all, observables are thus computed with $N \approx 2 \times 10^6$ particles is numerical noise $\sim 1/\sqrt{N} \approx 10^{-3}$ on every determination of O_{α} .

• With
$$\xi$$
 = 0.1, noise on $L_{\alpha,l} = \frac{O_{\alpha}(\bar{\Psi} + \xi \Psi_l) - O_{\alpha}(\bar{\Psi} - \xi \Psi_l)}{2\xi}$ is $\approx 10^{-2}$.

QCD challenges from pp to AA collisions, Münster, Sept.2–6, 2024 42/40