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Anisotropic flow at RHIC
and prospects for LHC

® Anisotropic flow at RHIC

® An experimental success story

& A wealth of data
& As of end of November 2005, 13 PRL & 4 PRC

» Theoretical challenges

o Conflicting interpretations of the data:
hydrodynamic expansion vs. out-of-equilibrium scenario

® Anisotropic flow at LHC

» Very few theoretical predictions...

» ... yet measuring flow with ALICE should be “easy”
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Anisotropic flow at RHIC
and prospects for LHC

® Anisotropic flow at RHIC

® An experimental success story

o A wealth of data with novel directions
s Asof February 1st, 2007 , 15 PRL &5 PRC

» Theoretical challenges + 5 preprints

o Conflicting interpretations of the data:
hydrodynamic expansion vs. out-of-equilibrium scenario

® Anisotropic flow at LHC
» Very few theoretical predictions... Nihil novum sub sole

® ... but we can build on RHIC results!
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Anisotropic (collective) flow

Consider a non-central collision:

anisotropy of the source (in the
plane transverse to the beam)

= anisotropic pressure gradients
(larger along the impact parameter)
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Anisotropic (collective) flow

Consider a non-central collision:
anisotropy of the source (in the
plane transverse to the beam)

= anisotropic pressure gradients

(larger along the impact parameter)

push

= anisotropic fluid velocities
anisofropic emission of particles:

“anisotropic collective flow”
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Anisotropic (collective) flow

Consider a non-central collision:
anisotropy of the source (in the
plane transverse to the beam)

= anisotropic pressure gradients

(larger along the impact parameter)

push

Af—(l)R = anisotropic fluid velocities
anisotropic emission of particles:

“anisotropic collective flow”
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Anisotropic (collective) flow

Consider a non-central collision:
anisotropy of the source (in the
4 Q plane transverse to the beam)
= anisotropic pressure gradients

(larger along the impact parameter)

push

é(f_q)R = anisotropic fluid velocities
anisotropic emission of particles:

“anisotropic collective flow”

dN dN
it | 1 +2 - y 2o —
Ed3p X S dords 1+ 2vicos(p—dp) +2v5c082(0—Dp) + - - |

More particles along the impact parameter (v - & =0 or 180°) than
perpendicular to it &z “elliptic flow” vy = (cos 2(¢ - & p))> O.

average over particles
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Anisotropic (collective) flow

A "Flow”, v,, do not imply fluid dynamics...

(Transverse) anisotropy of the source in a non-central collision

= the amount of matter seen by a high-p; particle traversing the
medium is anisotropic (shorter path along the impact parameter)

= anisotropic jet quenching:
anisotropic distribution of high-pr particles

which is best characterized in terms of Fourier harmonics v,, (detector
independent; more robust in Monte-Carlo computations)
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Anisotropic flow:
what have we learned from RHIC?

Elliptic flow v varies with (pseudo)rapidity (note: v2(1) = v2(y))
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Anisotropic flow:
what have we learned from RHIC?

Elliptic flow vy varies with (pseudo)rapidity me “limiting fragmentation”
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Anisotropic flow:
what have we learned from RHIC?

The v2 of charged hadrons grows linearly with transverse momentum
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Anisotropic flow:
what have we learned from RHIC?

The v2 of charged hadrons grows linearly with transverse momentum
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Anisotropic flow:
what have we learned from RHIC?

The v2 of charged hadrons grows linearly with pr, then saturates
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Anisotropic flow:
what have we learned from RHIC?

The v2(pr) of identified hadrons show mass ordering

o
> 0.14
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At a given fransverse momentum, heavier hadrons have a smaller v
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Anisotropic flow:
what have we learned from RHIC?

The v2(pr) of identified hadrons show mass ordering below 1.5 GeV/c

PH -ENIX

Above, the ordering no longer holds
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Anisotropic flow:
what have we learned from RHIC?

Above 2 GeV/c there seems to be a baryon vs. meson splitting of va(pr)
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Anisotropic flow:
what have we learned from RHIC?

(Various) number-of-constituent-quark scalings can be identified
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Anisotropic flow:
what have we learned from RHIC?

@ The pr-integrated elliptic flow v2(77) shows extended longitudinal
scaling ("limiting fragmentation”) from /s, = 20 to 200 GeV

e At mid-rapidity, the v2(pr) of charged hadrons first rises linearly up
to pr ~ 2 GeV/c, then saturates

a in the linear-rise region the slope increases with impact parameter

@ The v2(pr) of identified hadrons at mid-rapidity

a show mass ordering for pr < 1.5 GeV/c

@ seem ’roh the number of constitfuent quarks above that

1 DT 1 (KET>
— U2 (—) , —U2 ?
Ng m Ng m
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Anisotropic flow:
what can we expect at LHC?

Will the extended longitudinal scaling of the pr-integrated elliptic
flow vy (1) persist?
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Anisotropic flow:
what can we expect at LHC?

Will the extended longitudinal scaling of the pr-integrated elliptic

flow vy (1) persist? pz v2(n = 0) =~ 0.08
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Anisotropic flow:
what can we expect at LHC?

Will the extended longitudinal scaling of the pr-integrated elliptic

flow vy (1) persist? pz v2(n = 0) =~ 0.08
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Anisotropic flow:
what can we expect at LHC?

Will the linear rise with In./s,, of the pr-integrated elliptic flow atf
midrapidity va(n = 0) persist?
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Anisotropic flow:
what can we expect at LHC?

What if the extended longitudinal scaling of the pr-integrated elliptic
flow vy (1) persist?

av2(7) = 0) =~ 0.08 1& present ideal-fluid dynamics approaches will
need some revisiting

a the scaling will have to be taken seriously!
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Anisotropic flow:
what can we expect at LHC?

What if the extended longitudinal scaling of the pr-integrated elliptic
flow vy (1) persist?

a v2(1) = 0) ~ 0.08 12 present approaches will
need some revisiting

a the scaling will have to be taken seriously!

Up to now, only one attempt at explaining it, as reflecting the absence

of (Kinetic) equilibrium of the created in the collision:
longitudinal scaling of iN = longitudinal scaling of v2(y)
Y

* three miserable lines in Eur. Phys. J. A 29 (2006) 27
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Anisotropic flow:
out-of-equilibrium scenario

How does anisotropic flow depend on the number N of collisions
undergone by parfticles?
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Anisotropic flow:
out-of-equilibrium scenario

How does anisotropic flow depend on the number N of collisions
undergone by parfticles?

4 In the absence of rescatterings (“gas”), no flow develops.

> N
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Anisotropic flow:
out-of-equilibrium scenario

How does anisotropic flow depend on the number N of collisions
undergone by parfticles?

4 In the absence of rescatterings (“gas”), no flow develops.

4 The more collisions, the larger the flow.

U9 A

/1bsence of equilibrium: v2 varies with
> N
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Anisotropic flow:
out-of-equilibrium scenario

How does anisotropic flow depend on the number N of collisions
undergone by parfticles?

4 In the absence of rescatterings (“gas”), no flow develops.

4 The more collisions, the larger the flow.

4 For a given number of collisions, the system fhermalizes: further
collisions no longer increase v-.

V24 fluid-dynamics regime: v, constant

absence of equilibrium: v2 varies with A/
> N
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Anisotropic flow:
out-of-equilibrium scenario

How does anisotropic flow depend on the number N of collisions
undergone by parfticles?

4 In the absence of rescatterings (“gas”), no flow develops.

4 The more collisions, the larger the flow.

4 For a given number of collisions, the system fhermalizes: further
collisions no longer increase v-.

V24 fluid-dynamics regime: v, constant

absence of equilibrium: v2 varies with A/
dN
> \/ -
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Anisotropic flow:
what can we expect at LHC?

At RHIC, the v2(pr) of charged hadrons at mid-rapidity first rises
linearly up to pr ~ 2 GeV/c

a How does the slope of v5(pr) at a given centrality evolve with \/Syy ?

D.a L I LI I L L I L B DL I L L
\5yy (GeV) ®) STAR
- 5~ 200 (PHENIX) - A
- —® 62.4 (PHENIX) : The vo data for pions and kaons at 62.4 GeV tends to
- -m 17 (CERES) be about 5% smaller than the 200 GeV data (although
D2k . at pr > 1 GeV/c the difference is within systematic un-
_ L ¢r+ P C}J certainties). The anti-proton data at 62.4 and 200 GeV
i G'D | are consistent within errors. The data exclude a proton
s | I~ | vo variation between 62.4 and 200 GeV greater than ap-
i o3 | proximately 15%.
0.1} . :
4 e _
Appreciable differences are seen between the 17.3 GeV
' ?f | and 62.4 GeV data.
D tao oo b v by v Lo a g gy (SIigh'l' disagreemen'l')
1 2 3 4 5
pr (GeV/ic)

What drives the increase of the pr-integrated v2? The rise in (p7)?
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Anisotropic flow:
what can we expect at LHC?

At RHIC, the v2(pr) of charged hadrons at mid-rapidity first rises
linearly up to pr ~ 2 GeV/c, then saturates.

a How does the slope of v5(pr) at a given centrality evolve with \/Syy ?

1z What drives the increase of the pr-integrated v2?

a How does the position of the breaking point™ in the v2(pr) shape
evolve? (with centrality, with {/Syy )

pg- “natural” expectation: the pr of the breaking point should increase

with centrality, with \/Syn, and with the size of the colliding nuclei,
and decrease with rapidity

(It is far from obvious that the PHENIX data support this expectation)

* has to be defined properly...
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Anisotropic flow:
what can we expect at LHC?

At SPS and RHIC the v2(p7) of identified hadrons at mid-rapidity show
mass ordering for pr = 1.5 GeV/c... and that should persist at LHC!

a Will the ordering be in quantitative agreement with hydro?

All slow particles (pr/m < max fluid velocity) have the same vn(% ,y)
since they originate from the same fluid cell;

for fast particles, V2(P1) o< (PT — MTUmax). PLB 642 (2006) 227

Qualitative agreement is not satisfactory... If (!) hydrodynamics is the
large-number-of-collisions limit of the out-of-equilibrium case, then

not foo far from equilibrium, the mass ordering should already be
present.

see QGSM: PLB 631 (2005) 109 and RQMD/UrQMD: JPG 32 (2006) 1121
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Anisotropic flow:
what can we expect at LHC?

At SPS and RHIC the v2(p7) of identified hadrons at mid-rapidity show
mass ordering for pr = 1.5 GeV/c... and that should persist at LHC!

a Will the ordering be in quantitative agreement with hydro?

All slow particles (pr/m < max fluid velocity) have the same vn(% ,y)
since they originate from the same fluid cell;

for fast particles, V2(P1) o< (PT — MTUmax). PLB 642 (2006) 227

a Till which pr does the ordering hold? (same expectations as above:
the position should increase with centrality, with \/Sxy, and with the
size of the colliding nuclei, and decrease with rapidity)
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Anisotropic flow:
what can we expect at LHC?

At SPS and RHIC the v2(p7) of identified hadrons at mid-rapidity show
mass ordering for pr = 1.5 GeV/c... and that should persist at LHC!

a Will the ordering be in quantitative agreement with hydro?

All slow particles (pr/m < max fluid velocity) have the same vn(% ,y)
since they originate from the same fluid cell;

for fast particles, V2(P1) o< (PT — MTUmax). PLB 642 (2006) 227
a Till which pr does the ordering hold? (same expectations as above:

the position should increase with centrality, with \/Sxy, and with the
size of the colliding nuclei, and decrease with rapidity)

@ What happens above the mass-ordering region?
number-of-constituent-quark scaling?
cf. Peter Levai's talk(?)
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Anisotropic flow:
what have we learned from RHIC?

PHOBOS and STAR (+ theorists) have made huge progress in
demonstrating the importance of fluctuations, in particular when
comparing collisions with different centralities.

a Old vision: one should compare v2 f¢)(which is constant in )

"geometrical” eccentricity
(ellipsis with the shorter axis along the impact parameter)

a The nuclei cross each other fast: the nucleons in
the overlap region are frozen in a configuration that

differs from the geometrical picture (and varies from =52 2XE)
event to event) Participants #% "

12 the proper scaling is rather with the “participant eccentricity” epa
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Anisotropic flow:
what have we learned from RHIC?

Using the "participant eccentricity” €part, Cu-Cu and Au-Au data at a

: 1 d/N . .
given fall on the same curves [predicted in PLB 627 (2005) 49]
dy »
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Anisotropic flow:
what have we learned from RHIC?

Using the "participant eccentricity” €part, Cu-Cu and Au-Au data at a

: 1 dN . .
given fall on the same curves [predicted in PLB 627 (2005) 49]
dy
0.8~ .“Eit?ti.“fi?i!'?f"frf'.“!"?'l .
200 GeV M., .= 82 PHOBOS prellmilnaw | |
' B 200 GeV, Authu, racks 130 GeV, STAR
06| ®AUrAU35-50% et _
@ Cu+Cu 3-20% I | @ 624 GeV, AurAu hits -
“+ . 3 Bigsisnie i |
& | omwosos g & g |3 oo : '
f 0.4 Preliminary ® [ ] — ﬂn. 0.2 —e 2 4 GeV, Cu*Cu, hils | : . ) - » +¢ : —
:N . g o }H.ﬂ_:ﬁl . .
0.2 - .l | o1l Lt?, | |
e 0<n<1.6
ol® e e 1 J | |
0 05 1 15 2 25 3 35 0 o= 2% 35
pr (GeVic) 1(S) (dN_ /dy) [fm™]

Temptation: extrapolate to LHC!
But beware, the underlying model for the eccentricity might change
(here, Glauber model; CGC-inspired calculation yields larger €)
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Anisotropic flow: from RHIC to LHC

The pr-integrated directed flow v1(7) shows extended longitudinal
scaling (“limiting fragmentation”) from /s, = 20 to 200 GeV...

-~ FrTfrrrryryIvyrrypryrrooprrrrr TS
0.14F e 19.6GeV — -E,% i 2F yCM =0 <
0.12:_ v 62.4 GeV ‘*II-I =ty - }" :_ o _:
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"'E A 200 GeV 0fF—————¢ s :
~ 0.06 + “iE T B
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> 4 3 2 -1 0 1 2 Y S N SN BN B B
T«i -5 -4 -3 -2 -1 0

n(ory)-y

beam
.. but that cannot be true over the whole y range (vi(y = 0)= 0),
Unless v1 vanishes in an extended region!
Yet, expect a very small v; up to y ~ 5 at LHC.
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Anisotropic flow: from RHIC to LHC

STAR has also measured the fourth anisotropic-flow harmonic v4, as a
function of pr, y, particle type, at /s, = 62.4 and 200 GeV

cf. Raimond Snellings in a few moments

Within , to leading order in the -
, va(pr,y) = —va(pr,y)? for each type of fast
particle. PLB 642 (2006) 227

Whereas in the ouf-of-equilibrium scenario v2, v4 are proportional to

the number of collisions N = v;‘ X i, minimum at

U2
iz in the non-equilibrium scenario U4(pT’y)2 > — (= 1.2 at RHIC).
Ug(pT,y)
Expect a smaller ~ at LHC... (but v. will still be sizable)
U2
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Anisotropic flow: questions for LHC

a Extended longitudinal scaling of the pr-integrated elliptic flow?

a If the v2(pr) of charged hadrons at mid-rapidity rises linearly at low
transverse momentum

a how does the slope compare to lower beam energies?
a Where does the linear rise stop? Systematics wanted.

a does v2(p1) goes down to O at some (high pr) point?

@ Regarding the v2(p7) of identified hadrons at mid-rapidity
@ mass ordering at low p7r? (Quantitative results wanted!) Till where?
@ (not mentioned here): v5(pr) of charm / beauty?

a v Will also be instructive! (at least, if theorists care...)
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Extra slides



Anisotropic flow: pr-dependence

The "natural” expectation is that the P71 of the breaking point in the
v2(pr) shape should increase with centrality, with v/Syy, and with the
size of the colliding nuclei, and decrease with rapidity
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Heavy-ion collisions:
description

At , each emits particles according to
(Bose-Einstein, Fermi-Dirac):

P :C/exp< p* (w)> »

d3p
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Heavy-ion collisions:
description

At , each emits particles according to
(Bose-Einstein, Fermi-Dirac):

7
Ed_N - C/ exp p (ZC) p,u
d3p

N particle momentum

2nd ALICE Physics Week, Munster, February 12-16, 2007 N.Borghini — Ezh Universitit Bielefeld



Heavy-ion collisions:
description

At , each emits particles according to
(Bose-Einstein, Fermi-Dirac):

7
Ed_N — C/ exp p (CIZ’) p,u
d3p

N particle momentum

A consistent picture requires that
&
limit = small- limit

& one can compute the particle distribution in a model-independent,
analytic way (using a saddle-point approximation).

N.Borghini, J.-Y.Ollitrault PLB 642 (2006) 227
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: analytical results

[Slow par’ricles](p;p/m < ) move together with the

A

There exists a whose equals
the particle velocity: minimizes p”

T
Sl > 1z Integrand in the IS
Gaussian, with width « 1/min(+/p"u,,) = 1//m .

> saddle-point approximation!
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Ideal fluid-dynamics: analytical results

Slow particles)(pr/m < i, (5 )) move together with the fluid.

Uy

A

There exists a fluid cell whose velocity equals

/\ the particle velocity: minimizes p'u,.

s’

pT//‘ 7 12 Integrand in the Cooper-Frye spectrum is
\J Gaussian, with width « 1/min(v/272,) = 1/,/77.

> saddle-point approximation!

a Similar momentum distributions for different particles

d/V __h PT
E@_C (m)f(aay7¢>
a Un(% ,y) identical for all particles!

: Vg (PT :
= mass-ordering of v2(pr, V), 2 ( - ,y) universal
2
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/\ the particle velocity: minimizes p'u,.
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pT//‘ 7 12 Integrand in the Cooper-Frye spectrum is
\J Gaussian, with width « 1/min(v/272,) = 1/,/77.

> saddle-point approximation!

a Similar momentum distributions for different particles

d/V __h PT
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a Un(% ,y) identical for all particles!
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: analytical results

[Fas’r par’ricles)( pr/m > ) move faster than the

A

pr/m Such a parfticle was emitted by a along
the direction of its velocity where the is
(often, close to the edge of the ).
i Saddle-point expansion of the
around the minimum of p"
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: analytical results

[Fas’r par’ricles)( pr/m > ) move faster than the

A

pr/m Such a parfticle was emitted by a along
the direction of its velocity where the is
(often, close to the edge of the ).
i Saddle-point expansion)of the
around the minimum of p"

> Check the domain of validity!
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: analytical results

[Fas’r par’ricles)( pr/m > ) move faster than the

A

pr/m Such a parfticle was emitted by a along
the direction of its velocity where the is
(often, close to the edge of the ).
i Saddle-point expansion)of the
around the minimum of p"

> Check the domain of validity!

— T
a Momentum distribution o exp< o a )

a To leading order in the -

va(pr) = (pr — m7 ): mass-ordering of v2(p7,y) persists;

@ Assuming additionally that , one finds for pr large enough:
U4(pTay)
UQ(pTvy)z
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