Multiparticle correlations due to momentum conservation and statistical jet studies

Nicolas BORGHINI

Total momentum conservation and statistical studies of jets

- A few useful definitions and properties
	- probability distributions, cumulants, generating functions...

- Multiparticle correlation induced by total momentum conservation
	- a general, model-independent calculation

Eur. Phys. J. C **30** (2003) 381

 Specific study of two- and three-particle correlations due to total momentum conservation

Phys. Rev. C **75** (2007) 021904(R)

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 1/23 T

A well-defined mathematical problem…

"closed": $\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_N = \mathbf{0}$ Consider a finite-size- N ring polymer (in a D -dimensional space):

Take M monomers among the N ones.

the overall constraint $\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_N = \mathbf{0}$? What is the multiple correlation induced between these monomers by

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 2/23 T

A well-defined mathematical problem…

Consider N particles constrained by (total) momentum conservation: $\overline{}$

particles emitted in a Au-Au collision satisfy $\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_N = \mathbf{0}$. for instance, in the center-of-mass frame of the colliding nuclei, the *N*

What is the correlation between M arbitrary particles induced by the momentum-conservation constraint?

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 3/23 T

Multiparticle correlations & cumulants

 M -particle probability distribution $f(\mathbf{p}_{i_1},...,\mathbf{p}_{i_M})$: probability that particles $\{i_1,\ i_2,\ \ldots,\ i_M\}$ have momenta \mathbf{p}_{i_1} , \mathbf{p}_{i_2} , $\ \ldots,\ \mathbf{p}_{i_M}$ irrespective of the momenta of the $N\!-\!M$ other particles.

 \mathbf{p} is normalized to unity: $f(\{\mathbf{p}_{i_k}\}) = \mathcal{O}(1), \ \forall M$

Generating function of the probability distribution: x_1, \ldots, x_N auxiliary (complex) variables $G(x_1,...,x_N) = 1 + x_1 f(\mathbf{p}_1) + x_2 f(\mathbf{p}_2) + ... + x_1 x_2 f(\mathbf{p}_1, \mathbf{p}_2) + ...$

Independent particles: $f(\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_N) = f(\mathbf{p}_1) f(\mathbf{p}_2) \cdots f(\mathbf{p}_N)$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 4/23 T

Multiparticle correlations & cumulants

M-particle cumulant of the probability distribution $f_c(\mathbf{p}_{i_1}, \ldots, \mathbf{p}_{i_M})$: connected part of the probability distribution, responsible for the "correlations" (= deviations from statistical independence)

$$
f(\mathbf{p}_1, \mathbf{p}_2) = f_c(\mathbf{p}_1) f_c(\mathbf{p}_2) + f_c(\mathbf{p}_1, \mathbf{p}_2)
$$

\n•
$$
\bullet
$$
 =
$$
\bullet
$$

$$
\bullet
$$

$$
(\text{note: } f(\mathbf{p}) = f_c(\mathbf{p}) \dots)
$$

At the three-particle level:

$$
\bullet \bullet = \frac{1}{100} + \frac{1}{
$$

Generating function of the cumulants: \circled{c}

 $\ln G(x_1,...,x_N) = 1 + x_1 f_c(\mathbf{p}_1) + x_2 f_c(\mathbf{p}_2) + ... + x_1 x_2 f_c(\mathbf{p}_1, \mathbf{p}_2) + ...$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 5/23 T

Multiparticle correlations & cumulants

How do cumulants scale with the total multiplicity N ?

For a system made of independent sub-systems (or with short-range correlations), the probability distributions add up:

$$
f(\{\mathbf{p}_j\}) = \sum_A \frac{N_A}{N} f_A(\{\mathbf{p}_j\}) \quad \text{i.e.} \quad G(\{x_j\}) = \prod_A g_A\left(\left\{\frac{N_A x_j}{N}\right\}\right)
$$

At the cumulant level, $\ln G(\{x_j\}) = \sum_A \ln g_A\left(\left\{\frac{N_A x_j}{N}\right\}\right)$

Expand, search for the coefficient of $x_{i_1} \dots x_{i_M}$

$$
\qquad \qquad \text{if} \ \ f_c(\mathbf{p}_{i_1},...,\mathbf{p}_{i_M}) = \mathcal{O}\bigg(\frac{1}{N^{M-1}}\bigg)
$$

What about the case of particles whose momenta are constrained by total momentum conservation?

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 6/23 T

Total momentum conservation and *M* -particle distribution

which one then inserts in the generating function...

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 7/23 T

Total momentum conservation and *M* -particle distribution

which one then inserts in the generating function...

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 7/23 T

Generating function

Introducing the notation $\langle g({\bf p})\rangle \equiv \int g({\bf p}) F({\bf p})\,{\rm d}^D {\bf p}/\mathcal{N}_D$, one finds: ! $g(\mathbf{p})F(\mathbf{p})\,\mathrm{d}^D\mathbf{p}/\mathcal{N}_D$

$$
G(x_1,...,x_N) = C_D \int \frac{d^D \mathbf{k}}{(2\pi)^D} \langle e^{i\mathbf{k} \cdot \mathbf{p}} \rangle^N \exp \left(\sum_{j=1}^N \frac{x_j F(\mathbf{p}_j)}{\langle e^{i\mathbf{k} \cdot \mathbf{p}} \rangle} \right)
$$

\n
$$
= C_D \int \frac{d^D \mathbf{k}}{(2\pi)^D} \exp \left[N \left(\ln \langle e^{i\mathbf{k} \cdot \mathbf{p}} \rangle + \sum_{j=1}^N \frac{\overline{x}_j}{N} \frac{e^{i\mathbf{k} \cdot \mathbf{p}_j}}{\langle e^{i\mathbf{k} \cdot \mathbf{p}} \rangle} \right) \right]
$$

\nonly depends on $\frac{x}{N}$
\nI shall show (using a saddle-point method) that
\n
$$
G(x_1,...,x_N) \propto e^{N\mathcal{F}(\mathbf{k}_0)} \left(1 + \sum_{q>l} \frac{x^l}{N^q} \right)
$$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 8/23 T

Saddle-point method

A Taylor expansion around the saddle-point \mathbf{k}_0 yields

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 9/23 T

Cumulants

Hence the cumulants:

$$
f_c(\mathbf{p}_{i_1},...,\mathbf{p}_{i_M}) = \frac{\text{coef. of } x_{i_1} \cdots x_{i_M}}{\text{in } N\mathcal{F}(\mathbf{k}_0)} + \mathcal{O}\bigg(\frac{1}{N^M}\bigg) = \mathcal{O}\bigg(\frac{1}{N^{M-1}}\bigg)
$$

The cumulants arising from total momentum conservation follow the same scaling behaviour as those from short-range correlations!

nice for "cumulant" or "Lee-Yang zeroes" methods of anisotropic-flow analysis

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 10/23 T

Computing the first cumulants

The saddle-point is given by $\mathcal{F}'(\mathbf{k}_0) = 0$, i.e.

$$
\left(\sum_{j=1}^{N} \frac{x_j}{N} \frac{e^{i\mathbf{k}_0 \cdot \mathbf{p}_j}}{\langle e^{i\mathbf{k}_0 \cdot \mathbf{p}} \rangle} - 1\right) \langle \mathbf{p} e^{i\mathbf{k}_0 \cdot \mathbf{p}} \rangle = \sum_{j=1}^{N} \frac{x_j}{N} \mathbf{p}_j e^{i\mathbf{k}_0 \cdot \mathbf{p}_j}
$$

The cumulants are given by $\bigl|\ln G(x_1,\ldots,x_N)=N\mathcal{F}(\mathbf{k}_0)\bigr|$

To lowest order*,
$$
ik_0 = -\frac{D}{\langle \mathbf{p}^2 \rangle} \sum_{j=1}^N \frac{x_j}{N} \mathbf{p}_j
$$
, hence
\n
$$
\mathcal{F}(\mathbf{k}_0) = \sum_{j=1}^N \frac{x_j}{N} - \frac{D}{2\langle \mathbf{p}^2 \rangle} \left(\sum_{j=1}^N \frac{x_j}{N} \mathbf{p}_j \right)^2
$$
\nwhich gives $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{D \mathbf{p}_1 \cdot \mathbf{p}_2}{N\langle \mathbf{p}^2 \rangle}$, of order $\mathcal{O}\left(\frac{1}{N}\right)$ as expected
\n* assuming $F(\mathbf{p})$ isotropic, so that $\langle \mathbf{p} \rangle = 0$ and $\langle (\mathbf{k}_0 \cdot \mathbf{p})^2 \rangle = \mathbf{k}_0^2 \langle \mathbf{p}^2 \rangle / D$
\nHigh- \mathbf{p}_r physics at LHC, Jyväskylä, March 23, 2007
\nN. Borghini – 11/23

Computing the first cumulants

Going to the next order in $\frac{x}{\Delta t}$: *x N*

$$
\mathbf{ik}_0 = -\left[1_D - \left(X_0 1_D - \frac{D}{\left\langle \mathbf{p}^2 \right\rangle} X_2\right)\right]^{-1} \frac{D}{\left\langle \mathbf{p}^2 \right\rangle} \mathbf{X_1}
$$

unit $D \times D$ matrix

with
$$
X_0 \equiv \sum_{j=1}^N \frac{x_j}{N}
$$
, $X_1 \equiv \sum_{j=1}^N \frac{x_j}{N} \mathbf{p}_j$, $X_2 \equiv \sum_{j=1}^N \frac{x_j}{N} \mathbf{p}_j \otimes \mathbf{p}_j$

$$
\mathbf{E} \cdot \mathcal{F}(\mathbf{k}_0) = X_0 - \frac{D}{2\langle \mathbf{p}^2 \rangle} (\mathbf{X}_1)^2 - \frac{D}{2\langle \mathbf{p}^2 \rangle} \mathbf{X}_1 \cdot \left(X_0 1_D - \frac{D}{\langle \mathbf{p}^2 \rangle} X_2 \right) \cdot \mathbf{X}_1
$$

$$
\ln G(x_1, ..., x_N) = \sum_{j=1}^N x_j \left[\frac{D}{2N \langle \mathbf{p}^2 \rangle} \sum_{j,k} x_j x_k (\mathbf{p}_j \cdot \mathbf{p}_k) \right]^{\text{2-particle cumulants}}
$$

$$
\left[\frac{D}{2N^2 \langle \mathbf{p}^2 \rangle} \sum_{j,k,l} x_j x_k x_l \left[\mathbf{p}_j \cdot \mathbf{p}_l - \frac{D}{\langle \mathbf{p}^2 \rangle} (\mathbf{p}_j \cdot \mathbf{p}_k)(\mathbf{p}_k \cdot \mathbf{p}_l) \right] \right]
$$

3-particle cumulants: ! *O*(1*/N*²)

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 12/23 T

Total momentum conservation and *M* -particle cumulants

Using a saddle-point method (which implies $N\gg 1$), I have computed in a model-independent way the multiparticle cumulants arising from the constraint $\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_N = \mathbf{0}$ $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{D \mathbf{p}_1 \cdot \mathbf{p}_2}{N \langle \mathbf{n}^2 \rangle}$ $N\langle \mathbf{p}^2\rangle$ $f_c(\mathbf{p}_1, \mathbf{p}_2, \mathbf{p}_3) = -\frac{D}{N^2(r)}$ $N^2\langle{\bf p}^2\rangle$ $(\mathbf{p}_1 \cdot \mathbf{p}_2 + \mathbf{p}_1 \cdot \mathbf{p}_3 + \mathbf{p}_2 \cdot \mathbf{p}_3)$ $+$ D^2 $\frac{D}{N^2\langle \mathbf{p}^2\rangle^2}\left[(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_3)+(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_2\cdot\mathbf{p}_3)\right]$ $+({\bf p}_1\cdot{\bf p}_3)({\bf p}_2\cdot{\bf p}_3)]$ will be taken =2 in what follows (transverse momentum conservation)

Moreover, the M –particle cumulant arising from the conservation of total momentum scales with multiplicity as $1/N^{M-1}$, as those from short-range correlations!

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 13/23 T

 $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{2 \mathbf{p}_1 \cdot \mathbf{p}_2}{N \langle \mathbf{n}^2 \rangle}$ $N(p^2)$ We have seen that $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{\mathbf{p}_1 \mathbf{p}_2}{N}$, which means that the two-particle probability distribution reads

$$
f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left(1 - \frac{2 p_1 p_2 \cos(\varphi_2 - \varphi_1)}{N \langle \mathbf{p}^2 \rangle} \right)
$$

Thus, if there is a first particle with transverse momentum \mathbf{p}_1 , then the probability to find a second particle with transverse momentum \mathbf{p}_2 is NOT isotropic, but larger "away" (in azimuth) from $\mathbf{p}_1.$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 14/23 T

 $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{2 \mathbf{p}_1 \cdot \mathbf{p}_2}{N \langle \mathbf{n}^2 \rangle}$ $N(p^2)$ We have seen that $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{\mathbf{p}_1 \mathbf{p}_2}{N}$, which means that the two-particle probability distribution reads

$$
f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left(1 - \frac{2 p_1 p_2 \cos(\varphi_2 - \varphi_1)}{N \langle \mathbf{p}^2 \rangle} \right)
$$

Thus, if there is a first particle with transverse momentum \mathbf{p}_1 , then the probability to find a second particle with transverse momentum \mathbf{p}_2 is NOT isotropic, but larger "away" (in azimuth) from $\mathbf{p}_1.$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 14/23 T

 $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{2 \mathbf{p}_1 \cdot \mathbf{p}_2}{N \langle \mathbf{n}^2 \rangle}$ $N(p^2)$ We have seen that $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{\mathbf{p}_1 \mathbf{p}_2}{N}$, which means that the two-particle probability distribution reads

$$
f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left(1 - \frac{2 p_1 p_2 \cos(\varphi_2 - \varphi_1)}{N \langle \mathbf{p}^2 \rangle} \right)
$$

Thus, if there is a first particle with transverse momentum \mathbf{p}_1 , then the probability to find a second particle with transverse momentum \mathbf{p}_2 is NOT isotropic, but larger "away" (in azimuth) from $\mathbf{p}_1.$

 $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{2 \mathbf{p}_1 \cdot \mathbf{p}_2}{N \langle \mathbf{n}^2 \rangle}$ $N(p^2)$ We have seen that $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{\mathbf{p}_1 \mathbf{p}_2}{N}$, which means that the two-particle probability distribution reads

$$
f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left(1 - \frac{2 p_1 p_2 \cos(\varphi_2 - \varphi_1)}{N \langle \mathbf{p}^2 \rangle} \right)
$$

Thus, if there is a first particle with transverse momentum \mathbf{p}_1 , then the probability to find a second particle with transverse momentum \mathbf{p}_2 is NOT isotropic, but larger "away" (in azimuth) from $\mathbf{p}_1.$

One cannot speak of "a jet + an (uncorrelated) background event"!

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 14/23 T

The conservation of total transverse momentum does correlate all particles in the event together!

 $f_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{D\mathbf{p}_1 \cdot \mathbf{p}_2}{N(\mathbf{n}^2)}$ $N\langle \mathbf{p}^2\rangle$ The correlation is back-to-back, & larger between particles with larger momenta

ist should not be forgotten in jet studies...

Its meaning?

That the conditional probability for an " associated" particle to have a momentum \mathbf{p}_2 when there is a "trigger" particle with momentum \mathbf{p}_1 is not the same as the probability to have a particle with momentum \mathbf{p}_2 irrespective of the momenta of the other particles. The "background" to the jet is modulated by its presence (need to balance the momentum).

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 15/23 T

Total momentum conservation and statistical studies of jets

The "background" to the jet is modulated by its presence (need to balance the momentum).

This is a model-independent statement! I do not assume any specific micro-/macroscopic picture of the correlation between the jet and the other particles.

IF issue for methods which decompose the event into jet+background, as they might not be easy to disentangle from each other.

Safer approach (cf. Claude Pruneau!):

 \triangle measure the cumulants on the one hand;

 compute their values due to various sources of correlation on the other hand.

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 16/23 T

The attractive term dominates over the first one when all three particles have transverse momenta larger than the rms transverse momentum: relevant case for high-*pT* studies!

Let us investigate the behaviour of this cumulant! (for simplicity, in the case $p_{\text{trigger}} \equiv p_1 > p_2 = p_3 \equiv p_{\text{assoc.}}$)

I shall use the relative angles $\Delta\varphi_{12}\equiv\varphi_1-\varphi_2$ and $\Delta\varphi_{13}\equiv\varphi_1-\varphi_3$

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 17/23 T

RHIC-inspired values: N = 8000 particles, $\langle \mathbf{p}^2 \rangle^{1/2} = 0.45$ GeV $p_1 = 3.2$ GeV, $p_2 = p_3 = 1.2$ GeV

RHIC-inspired values: N = 8000 particles, $\langle \mathbf{p}^2 \rangle^{1/2} = 0.45$ GeV $p_1 = 3.2$ GeV, $p_2 = p_3 = 1.2$ GeV

RHIC-inspired values: N = 8000 particles, $\langle \mathbf{p}^2 \rangle^{1/2} = 0.45$ GeV $p_1 = 6$ GeV $\geq 5(p_2 = p_3) = 1.2$ GeV

RHIC-inspired values: N = 8000 particles, $\langle \mathbf{p}^2 \rangle^{1/2} = 0.45$ GeV $p_1 = 6$ GeV $\geq 5(p_2 = p_3) = 1.2$ GeV

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 21/23 T

SPS-inspired values: $N = 2500$ particles, $\langle p^2 \rangle^{1/2} = 0.45$ GeV $p_1 = 3.2$ GeV, $p_2 = p_3 = 1.2$ GeV

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 22/23 T

Total momentum conservation and statistical studies of jets

Total momentum conservation induces correlations between the particles emitted in a collision.

These correlations can be computed… and their value can be estimated if one "knows" the total emitted multiplicity N and the mean square momentum $\langle \mathbf{p}^2 \rangle.$

Inter can be treated as parameters

Universität Bielefeld

Do not underestimate its possible role!

High–p_physics at LHC, Jyväskylä, March 23, 2007 N.Borghini — 23/23 T