Medium-induced modification of a parton shower

Nicolas BORGHINI

Medium-induced modification of jets

- **a** "Jet" studies in high-energy nucleus-nucleus collisions **a** Motivation
	- **a** Overview of some RHIC experimental results
	- Comments on existing models for RHIC phenomenology
- **a** Jet physics in collisions of elementary particles Modified Leading Logarithmic Approximation (MLLA)
- Towards a "medium-modified MLLA"

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 1/28

Jet studies in heavy-ion collisions

The high-energy collision of two heavy nuclei (Au, Pb...) leads to the production of thousands of particles:

Particles with high momenta are rare, but their production mechanism is a priori better understood (perturbative QCD): can probe the bulk.

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 3/28

"Jets" in Au-Au collisions at RHIC

One-particle observable: nuclear modification factor $R_{AA}\equiv$

(=1 if AA collision is a superposition of independent NN collisions)

In central collisions, one misses 80% of the high transverse momentum hadrons!

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 4/28

1

 d^2N_{AA}

d*P^T* d*y*

d2*Npp*

d*P^T* d*y*

 $N_{\rm coll}$

"Jets" in Au-Au collisions at RHIC

Study of azimuthal correlations between $\mathbb O$ a reference, "trigger" particle (leading particle) with momentum $P_{T\max}$, and $@$ "associated particles" with momenta $P_{T\,\rm cut}$ $<$ P_{T} $<$ $P_{T\max}$. particles" with momenta $P_{T \text{cut}} < P_T < P_{T \text{max}}$.

In central collisions, the "back jet" (= peak at 180° from the trigger particle) disappears

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 5/28

"Jets" in Au-Au collisions at RHIC: common lore

pp collisions **Au-Au collisions**

Only the fast partons created close to the edge of the medium can escape as jets; the others are "quenched".

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 6/28

"Jets" in Au-Au collisions at RHIC: usual description

Jet quenching is usually modelled as the energy loss of a fast parton, which emits soft gluons when traversing the medium.

radiated-energy spectrum per unit in-medium path length $\overline{\omega}$ d*I* $d\omega d\ell$ cf. BDMPS-Z-W, GLV…

Correctly reproduces the nuclear modification factor *RAA* , but

The formalism does not automatically ensure energy-momentum conservation (the parton can radiate more energy than it has initially!) \Rightarrow conservation is imposed a posteriori, globally ("quenching weights").

4 The formalism deals differently with the leading parton (for which the medium-enhanced radiation is considered) and the subleading ones \Rightarrow cannot address intra-jet correlations.

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 7/28

Main ingredients:

Resummation of double- and single-logarithms in $\ln \frac{1}{n}$ and $\ln \frac{E_{\rm jet}}{n}$; *x* $\ln \frac{E_{\rm jet}}{\Lambda}$ $\Lambda_{\textrm{eff}}$

Takes into account the running of α_s along the parton shower evolution;

- Probabilistic interpretation (results from intra-jet colour coherence):
	- $\frac{1}{2}$ independent successive branchings $g{\rightarrow}gg$, $g{\rightarrow}q\bar{q}$, $q{\rightarrow}qg$;
	- **a** with <u>angular ordering</u> of the sequential parton decays:

at each step in the evolution, the angle between father and offspring partons decreases.

Includes in a systematic way next-to-leading-order corrections.

 $\mathcal{O}(\sqrt{\alpha_s})$!

Central object: generating functional *Zi*[*Q,* Θ; *u*(*k*)]

 \blacksquare generates the various cross-sections ($\rightarrow ggg$, $\rightarrow ggq\bar{q}$...) for a jet initiated by a parton i (= g, q, \bar{q}) with energy Q in a cone of angle Θ

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 9/28

Some remarks:

One only considers partons with energy $Q \ge \Lambda_{\rm eff} \simeq \Lambda_{\rm QCD}$ Λ_{eff} infrared cutoff: parameter of the model.

 \Rightarrow in fact, $Z_i[Q, \Theta; \Lambda_{\text{eff}}; u(k)]$

For $Q = \Lambda_{\text{eff}}$, no further parton splitting: $Z_i[Q,\Theta;\Lambda_{\text{eff}};u(k)]$ $|_{Q=\Lambda_{\text{eff}}}$ $= u(k=Q)$

Physics should not depend on the choice of $\Lambda_{\text{eff}}!$ ∂ $\frac{\partial}{\partial Q}Z_{i}[Q,\Theta;\Lambda_{\mathrm{eff}};u(k)]$! ! $|_{Q=\Lambda_{\text{eff}}}$ $= 0$

Actually, Z_i only depends on the combination $Q \sin \Theta$ Hereafter, I shall use $\tau \equiv \ln \frac{Q \sin \Theta}{\Lambda_{\text{eff}}}$ $\Lambda_{\textrm{eff}}$

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 10/28

The parton distribution inside a jet with "energy" τ is given by $\bar{D}_i(x,\tau) \equiv Q \frac{\delta}{\delta u^{(\gamma)}}$ δ*u*(*xQ*) $Z_i[\tau; u(k)]$! ! $|_{u\equiv 1}$

The evolution of the distribution obeys

$$
\frac{\mathrm{d}}{\mathrm{d}\tau}\left[x\bar{D}_i(x,\tau)\right] = \sum_j \int_0^1 \mathrm{d}z \, \frac{\alpha_s}{2\pi} P_{ji}(z) \frac{x}{z} \bar{D}_i\left(\frac{x}{z},\tau'\right)
$$

with $\tau' \equiv \tau + \ln z$

To solve the evolution equation, one considers the Mellin moments

$$
D_i(\nu, \tau) \equiv \int_0^1 dx \, x^{\nu - 1} \left[x \bar{D}_i(x, \tau) \right]
$$

 \Rightarrow differential equations for $D_g(\nu, \tau)$ and $D_q(\nu, \tau)$

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 11/28

Differential equations for $D_g(\nu,\tau)$ and $D_q(\nu,\tau)$... which can be solved $\mathbf{D}^+ (\nu, \tau, \Lambda_{\mathrm{eff}})$ (linear combination of D_g and D_q), linear combination of the confluent hypergeometric functions Φ and Ψ.

One comes back to *x* -space by inverse Mellin transform

$$
\bar{D}(x,\tau,\Lambda_{\text{eff}}) = \int_{\epsilon - i\infty}^{\epsilon + i\infty} \frac{d\nu}{2\pi i} x^{-\nu} D^{+}(\nu, \tau, \Lambda_{\text{eff}})
$$

:

 $\mathsf{Assuming}^{\star} \; \Lambda_{\text{eff}} \ll Q$, one obtains the limiting spectrum $\bar{D}^{\text{lim}}(x,\tau,\Lambda_{\text{eff}})$

 This assumption, which can be relaxed, allows one to derive an analytical expression *for the single-parton distribution.

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini - 12/28

MLLA: limiting spectrum

$$
\bar{D}^{\lim}(x,\tau,\Lambda_{\text{eff}}) = \frac{4N_c\tau}{bB(B+1)} \int_{\epsilon - i\infty}^{\epsilon + i\infty} \frac{d\nu}{2\pi i} x^{-\nu} \Phi(-A+B+1,B+2;-\nu\tau)
$$

with

$$
A \equiv \frac{4N_c}{b\nu}, \qquad B \equiv \frac{a}{b}, \qquad a \equiv \frac{11}{3}N_c + \frac{2N_f}{3N_c^2}, \qquad b \equiv \frac{11}{3}N_c - \frac{2}{3}N_f
$$

(these coefficients follow from the prefactors of the leading-order splitting functions) and

$$
\tau \equiv \ln \frac{Q \sin \Theta}{\Lambda_{\text{eff}}}
$$

Impressive expression… which can be dealt with!

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini - 13/28

MLLA: limiting spectrum

Modified Leading Logarithmic Approximation:

 Successive independent parton splittings, with a constraint on the emission angles

 \Rightarrow limiting spectrum $\bar{D}^{\text{lim}}(x,\tau,\Lambda_{\text{eff}})$

The spectrum is exact in the asymptotic $\tau \rightarrow \infty$ limit and includes in a systematic way corrections to subleading order

$$
\mathcal{O}(\sqrt{\alpha_s})
$$

What about hadronization? ($\bar{D}^{\lim}(x,\tau,\Lambda_{\text{eff}})$ is a parton spectrum) Local parton-hadron duality (LPHD)

$$
\bar{D}^h(x,\tau,\Lambda_{\mathrm{eff}}) = K^h \bar{D}^{\mathrm{lim}}(x,\tau,\Lambda_{\mathrm{eff}})
$$

 \Rightarrow two parameters Λ_{eff} and K^h

(Actually, one can refine the description using different K^h for different hadrons, and stopping the shower evolution at different scales…)

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 15/28

MLLA vs. e^te⁻ data t_{ρ} -

Longitudinal distribution of hadrons inside a jet:

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 16/28

MLLA vs. e^te⁻ data t_{ρ} -

Longitudinal distribution of hadrons inside a jet:

Modeling the medium influence: a suggestion

a The hump of the limiting spectrum is mostly due to the singular parts of the splitting functions.

a In medium, the emission of a soft gluons by a fast parton increases.

IF One can model medium-induced effects by modifying the parton splitting functions … *Pji*(*z*)

(see e.g. Guo & Wang, PRL **85** (2000) 3591)

… and especially their singular parts:

$$
P_{qq}(z) = \frac{4}{3} \left[\frac{2(1+f_{\text{med}})}{(1-z)_+} - (1+z) \right]
$$

 $f_{\text{med}}>0 \Rightarrow$ Bremsstrahlung increases

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 17/28

Modeling the medium influence

 f_{med} = the influence of the medium on the parton cascade evolution \Rightarrow should account for

a geometry (the in-medium path length depends on the origin and orientation of the fast parton);

a dilution with time of the expanding medium;

(These effects are taken into account in the standard approaches)

- **a** dependence with the parton virtuality:
- a parton with energy E , virtuality Q , travels $\frac{1}{\sqrt{2}}$ before splitting *E Q* 1
- \Rightarrow f_{med} decreases with increasing Q. *f*_{med} decreases with increasing Q.

 f_{med} = the influence of the medium on the parton cascs
 \Rightarrow should account for
 4 geometry (the in-medium path length depends on the

orientation of the fast parton);
 4 dilution with time of the expanding mediu In the following, f_{med} will be taken as constant! (makes analytical calculations possible + not unreasonable in RHIC regime)

Parton cascade in the presence of a medium

One writes the evolution equation of the single parton distribution within a jet with modified splitting functions...

$$
\bar{D}^{\lim}(x,\tau) = \frac{4N_c\tau(1+f_{\text{med}})}{b\hat{B}(\hat{B}+1)} \int_{\epsilon-i\infty}^{\epsilon+i\infty} \frac{d\nu}{2\pi i} x^{-\nu} \Phi(-\hat{A}+\hat{B}+1,\hat{B}+2;-\nu\tau)
$$

$$
\hat{A} \equiv \frac{4N_c(1+f_{\text{med}})}{b\nu}, \qquad \hat{B} \equiv \frac{\hat{a}}{b}, \qquad \hat{a} \equiv \frac{11+12f_{\text{med}}}{3}N_c + \frac{2N_f}{3N_c^2}
$$

Hadronization takes place in vacuum: K^{h} unchanged

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 19/28

Parton distribution in the presence of a medium

Partons are redistributed from high p_T (large x) to low p_T (small x)

Ideal case: photon + jet

ns the photon gives the jet energy $E_{\rm jet}$

a Count how many jet particles have a momentum larger than some given cut $P_{\rm cut}$ after propagating through the medium:

 $\mathcal{N}(P_T \geq P_{\text{cut}})$ medium

For a jet in vacuum with the energy $E_{\rm jet}$, the spectrum is known \Rightarrow one knows (measurement / in vacuum MLLA)

 $\mathcal{N}(P_T \geq P_{\text{cut}})$ _{vacuum}

Compare $\mathcal{N}(P_T \geq P_{\text{cut}})_{\text{medium}}$ with $\mathcal{N}(P_T \geq P_{\text{cut}})_{\text{vacuum}}$

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 21/28

There are less high- particles in the presence of a medium. Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 22/28 *^P^T*

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini - 23/28 2 8 10 $\frac{1}{2}$ 7 & 1.5 GeV!) In the presence of a medium, less particles for $P_T \gtrsim 1.5$ GeV (particle excess for $P_T\lesssim 1.5$ GeV!)

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini - 23/28 In the presence of a medium, less particles for $P_T \gtrsim 1.5$ GeV (particle excess for $P_T\lesssim 1.5$ GeV!)

Universität Bielefeld

cf. PRL **95** (2005) 152301

The additional soft jet multiplicity can more easily be s
event "background".
Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini – 24/28 Measurement more promising at LHC: The additional soft jet multiplicity can more easily be seen above the event "background".

Hadron spectra

What if the jet energy is unknown?

The measured hadron spectrum is the convolution of

A parton spectrum $\propto 1/(p_T)^n$ (with possibly a p_T -dependent power, to account for experimental biases)

The "fragmentation function" $\bar{D}^h(x,\tau)$

$$
\frac{dN}{dP_T} \propto \int \frac{dx}{x^2} \frac{1}{(p_T)^n} \bar{D}^h(x, \tau = p_T) = \int \frac{dx}{x^2} \frac{x^n}{(P_T)^n} \bar{D}^h(x, \tau = \frac{P_T}{x})
$$

which can be computed within MLLA for both a jet in vacuum and a jet propagating through a medium. **4** A parton spectrum $\propto 1/(p_T)^n$ (with possibly a p_T -dep
to account for experimental biases)
4 The "fragmentation function" $\bar{D}^h(x,\tau)$
 $\frac{dN}{dP_T} \propto \int \frac{dx}{x^2} \frac{1}{(p_T)^n} \bar{D}^h(x,\tau=p_T) = \int \frac{dx}{x^2} \frac{x^n}{(P_T)^n} \bar{D}$

gives the nuclear modification factor *RAA*

Nuclear modification factor

MLLA parton shower in a medium

MLLA analytical description of the particle distribution with a jet. Formalism generalized to the propagation in a medium N.B. & U.A.Wiedemann, hep-ph/0506218 & 0509364

- Consistent treatment of parton splittings
	- energy-momentum conservation
	- a all branchings treated on an equal footing
- Phenomenological consequences
	- Distortion of the hump-backed plateau

Large P_T range available at LHC will test the dependence of parton energy loss on virtuality

Multiplicity above a trigger cutoff

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 27/28

MLLA parton shower in a medium

Future studies…

The second derivative of the generating functional $Z_i[Q,\Theta;u(k)]$ gives the two-particle cross-section use two-particle correlations

Implementation in a Monte-Carlo

Analytical results make a useful reference

- Geometry, $f_{\text{med}}(Q)$...
- **a** Jet broadening(?)
- **a** Jet hadrochemistry

S.Sapeta & U.A.Wiedemann, arXiv:0707.3494 [hep-ph]

…

Theoretisch-physikalisches Kolloquium, Heidelberg, Oct. 2, 2007 N.Borghini — 28/28