

Nicolas BORGHINI

in collaboration with Jean-Yves OLLITRAULT

SPhT, CEA Saclay

N. BORGHINI, Studies in azimuthal correlations - p.1/10

Azimuthal correlations

Why do we want to measure (two-particle) azimuthal correlations in non-central collisions?

- Resonance flow
- Azimuthally sensitive interferometry
- **Solution** Correlations between high- p_T particles

Different physical phenomena investigated...

...different methods of analysis

A single observable?

Anisotropic flow

The particle source is anisotropic (and around it there is only vacuum)

- $\Rightarrow \text{ the pressure gradient along the impact parameter direction } is stronger than the gradient perpendicular to the reaction plane$
- $\Rightarrow \underbrace{\text{anisotropic}}_{\text{in momentum space}} \text{ particle emission: FLOW}$

Particles mainly emitted *in-plane* ($\phi = \Phi_R$) rather than *out-of-plane* ($\phi - \Phi_R = 90^\circ$).

Anisotropic flow

Anisotropy quantified by a Fourier expansion:

 $p_1(\phi - \Phi_R) \propto 1 + 2 v_1 \cos(\phi - \Phi_R) + 2 v_2 \cos 2(\phi - \Phi_R) + \dots$

Measuring anisotropic flow is a complicated issue:

$$v_n = \langle \cos n(\phi - \Phi_R) \rangle$$

lab. frame not measured!

Many methods of analysis are available (even unbiased ones!)

Anisotropic flow

Anisotropy quantified by a Fourier expansion:

 $p_1(\phi - \Phi_R) \propto 1 + 2 v_1 \cos(\phi - \Phi_R) + 2 v_2 \cos 2(\phi - \Phi_R) + \dots$

Measuring anisotropic flow is a complicated issue:

$$v_n = \langle \cos n(\phi - \Phi_R) \rangle$$

lab. frame not measured!

Many methods of analysis are available (even unbiased ones!) ... at least, for directly detected particles (π^{\pm}, K^{\pm}, p) Improvements still possible for the flow of "resonances" particles that decay before reaching the detector: π^0, K_S^0, Λ ... \Rightarrow studied through their decay products

Azimuthally sensitive interferometry

Initial state:

Pressure gradients \Rightarrow in-plane flow

Azimuthally sensitive interferometry

Azimuthally sensitive interferometry

Azimuthal correlations of high p_T particles

Particles with high momentum (jets) lose energy while traversing the dense medium created

 \Rightarrow For a pair of jets created close to the edge, only one jet emerges (= detected with high p_T), while the back jet is quenched (= "not detected")

Azimuthal correlations of high p_T particles

Particles with high momentum (jets) lose energy while traversing the dense medium created

 \Rightarrow For a pair of jets created close to the edge, only one jet emerges (= detected with high p_T), while the back jet is quenched (= "not detected")

Amount of quenching depends on the length of the jet path in-medium

In non-central collisions, suppression pattern depends on the azimuths of the high p_T particles with respect to the reaction plane:

 \Rightarrow less quenching in-plane ($\phi = \Phi_R$), more out-of-plane

Two-particle correlations

Two particles characterized by $(\mathbf{p}_{T_1}, \mathbf{p}_{T_2}, y_1, y_2), \phi_1, \phi_2$

Rather than $\begin{cases} \phi_1 - \Phi_R \\ \phi_2 - \Phi_R \end{cases}$, use $\begin{cases} \Phi \equiv x\phi_1 + (1-x)\phi_2 : \text{ pair azimuth} \\ \Delta \phi \equiv \phi_2 - \phi_1 : \text{ relative angle} \end{cases}$

Two-particle distribution: $p_2(\Phi - \Phi_R, \Delta \phi)$ instead of $p_2(\phi_1 - \Phi_R, \phi_2 - \Phi_R)$

Fix $\Delta \phi$: $p_2(\Phi - \Phi_R)$ is the pair-angle Φ azimuthal distribution, which quantifies the anisotropy in $\Phi - \Phi_R$... reminiscent of $p_1(\phi - \Phi_R)$

Two-particle correlations

Two particles characterized by $(\mathbf{p}_{T_1}, \mathbf{p}_{T_2}, y_1, y_2), \phi_1, \phi_2$

Rather than $\begin{cases} \phi_1 - \Phi_R \\ \phi_2 - \Phi_R \end{cases}$, use $\begin{cases} \Phi \equiv x\phi_1 + (1-x)\phi_2 : \text{ pair azimuth} \\ \Delta \phi \equiv \phi_2 - \phi_1 : \text{ relative angle} \end{cases}$

Two-particle distribution: $p_2(\Phi - \Phi_R, \Delta \phi)$ instead of $p_2(\phi_1 - \Phi_R, \phi_2 - \Phi_R)$

Fix $\Delta \phi$: $p_2(\Phi - \Phi_R)$ is the pair-angle Φ azimuthal distribution, which quantifies the anisotropy in $\Phi - \Phi_R$

Introduce a Fourier expansion!

$$p_2(\Phi - \Phi_R) \propto 1 + \sum_{n \neq 0} v_n^{\text{pair}} e^{in(\Phi - \Phi_R)}$$

"Pair anisotropic flow"

"Pair anisotropic flow"

$$p_{2}(\Phi - \Phi_{R}) \propto 1 + \sum_{n \neq 0} v_{n}^{\text{pair}} e^{in(\Phi - \Phi_{R})}, \qquad v_{n}^{\text{pair}} = \left\langle e^{-in(\Phi - \Phi_{R})} \right\rangle$$
$$= 1 + 2 \sum_{n \geq 1} \left(v_{c,n}^{\text{pair}} \cos n(\Phi - \Phi_{R}) + v_{s,n}^{\text{pair}} \sin n(\Phi - \Phi_{R}) \right)$$

with
$$\frac{v_{c,n}^{\text{pair}} = \langle \cos(n(\Phi - \Phi_R)) \rangle}{\text{cf. } v_n = \langle \cos(n(\phi - \Phi_R)) \rangle}$$
, $\frac{v_{s,n}^{\text{pair}} = \langle \sin(n(\Phi - \Phi_R)) \rangle}{\text{``new''}}$

Many methods already available for measuring $v_{c,n}^{\text{pair}}$! \Rightarrow all methods of flow analysis

... can easily be modified to measure $v_{s,n}^{\text{pair}}$ (or directly v_n^{pair})

"Pair anisotropic flow": jet quenching

 $\phi_2 - \Phi_R$ $\Delta \phi$ $\phi_1 - \Phi_R$ Reaction plane

 $\Phi = \phi_1$ (trigger particle)

In p - p, number of associated particles ϕ_2 per trigger particle depends on $\Delta \phi$ only.

If the deficit in high- p_T particles is due to in-medium energy loss, then for a given $\Delta \phi$ the number of pairs per trigger particle depends on the length of the path followed by the associated particle only

$$\Rightarrow$$
 symmetry $\phi_2 - \Phi_R \rightarrow -(\phi_2 - \Phi_R)$

$$v_{s,2}^{\text{pair}}(\Delta\phi) = \left(v_{c,2}^{\text{pair}}(\Delta\phi) - v_2^{\text{trig}}\right) \tan(2\Delta\phi)$$

Azimuthally sensitive two-particle correlations

Azimuthal dependence of 2-particle correlations = pair anisotropic flow

• characterized by pair-flow coefficients $v_{c,n}^{\text{pair}}$, $v_{s,n}^{\text{pair}}$

model-independent!

same methods of analysis as for single-particle anisotropic flow \leftarrow cumulants, Lee–Yang zeroes: no need to estimate Φ_R !

- omitted issue: relate $v_{c,n}^{\text{pair}}$, $v_{s,n}^{\text{pair}}$ to models of the correlations:
 - model-dependent predictions
 - different recipes for each specific application (resonance flow, HBT, high- p_T particle correlations)

