

Nicolas BORGHINI

in collaboration with

R.S. BHALERAO

J.-P. BLAIZOT J.-Y. OLLITRAULT

CERN

Why heavy ion collisions?

Temperature

RHIC Au–Au results: the fashionable view

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

RHIC Au–Au results: the fashionable view

April 18, 2005

the fashionable view

RHIC Au–Au results: the fashionable view

RHIC Au–Au results: the fashionable view

Ideal fluid dynamics reproduce both p_t spectra and $v_2(p_t)$ of soft p_t spectra and $v_2(p_t)$ $(p_t \lesssim 2 \text{ GeV/c})$ identified particles for minimum bias collisions, near central rapidity.

This agreemen^t necessitates ^a soft equation of state, and very short thermalization times: $\tau_{\rm thermalization} < 0.6$ fm/ $c.$

⇒ \Rightarrow Strongly interacting Quark-Gluon Plasma

Ideal fluid dynamics in heavy-ion collisions

- A few reminders on fluid dynamics
- Fluid dynamics and heavy ion collisions: theory
	- Overall scenario
	- General predictions of ideal fluid dynamics
		- Momentum spectra
		- Anisotropic flow
- Fluid dynamics and heavy ion collisions: theory vs. data
-
- **Reconciling data and theory**

Fluid dynamics: physical quantities

- **O** Microscopic parameters
	- λ = mean free path between two collisions
	- v_{thermal} = average velocity of particles
- **O** Macroscopic parameters
	- $L =$ system size
	- v_{fluid} = fluid velocity
- Micro and macro are connected: kinetic theory
	- c_s = sound velocity $\sim v_{\rm thermal}$
	- $η = viscosity ~ ∨ ~v_{\text{thermal}}$

Fluid dynamics: various types of flow

Fluid dynamics: various types of flow

Three numbers:

$$
Kn = \frac{\lambda}{L}, \qquad Re = \frac{Lv_{\text{fluid}}}{\eta}, \qquad Ma = \frac{v_{\text{fluid}}}{c_s}
$$

⇒ **an important relation:**

$$
Kn \times Re = \frac{\lambda v_{\text{fluid}}}{\eta} \sim \frac{v_{\text{fluid}}}{c_s} = Ma
$$

Compressible fluid: Thermalized means Ideal

Viscosity \equiv departure from equilibrium

General scenario of ^a heavy-ion collision

0. Creation of a dense gas of particles

1. At some time τ_0 , the mean free path λ is much smaller than *all* dimensions in the system

 \Rightarrow thermalization (T₀), ideal fluid dynamics applies

The fluid expands: density decreases, λ increases (system size also)

 (3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

"(kinetic) freeze-out"

Freeze-out usually parameterized in terms of a temperature $T_{f.o.}$

If the mean free path varies smoothly with temperature, consistency requires $T_{f.o.} \ll T_0$

General scenario of ^a heavy-ion collision

To build a model (for comparison with experimental data), one needs

a freeze-out temperature $T_{\rm f.o.}$ (or a freeze-out criterion)

Computation of several observables

Heavy-ion collisions: Momentum spectra

At freeze-out, particles are emitted according to thermal distributions (Bose–Einstein, Fermi–Dirac) boosted with the fluid velocity:

$$
E\frac{dN}{d^3\mathbf{p}} = C \int_{\Sigma} \exp\left(-\frac{p^{\mu} u_{\mu}(x)}{T_{\text{f.o.}}}\right) p^{\mu} d\sigma_{\mu}
$$

freeze-out hypersurface
particle momentum

Remark: In the following, I shall use Boltzmann distributions!

("Quantum" effects may only affect pions at very low transverse momentum, where their spectrum is anyway contaminated by decay products)

Heavy-ion observable: Anisotropic flow

Initial anisotropy of the source (in the transverse plane)

 \Rightarrow anisotropic pressure gradients, larger along the impact parameter \vec{b} b

 \Rightarrow anisotropic emission of particles:

anisotropic (collective) flow

$$
E\frac{\mathrm{d}N}{\mathrm{d}^3\mathbf{p}} \propto \frac{\mathrm{d}N}{p_t \,\mathrm{d}p_t \,\mathrm{d}y} \Big[1 + 2\frac{v_1}{\sqrt{\cdot}}\cos(\phi - \Phi_R) + 2\frac{v_2}{\sqrt{\cdot}}\cos 2(\phi - \Phi_R) + \ldots\Big]
$$

measure pressure effects \Rightarrow equation of state

Consistent ideal fluid dynamics picture requires $T_{\rm f.o.} \ll T_0$ ⇔Ideal-fluid limit = $T_{\rm f.o.} \rightarrow 0$ limit one can compute in a model-independent way • the spectrum $E\frac{dN}{d^3p} = C \int_{\mathcal{D}} \exp\left(-\frac{p^{\mu}u_{\mu}(x)}{T_{\text{f.c.}}}\right) p^{\mu} d\sigma_{\mu}$ thee anisotropic flow $v_n = \frac{\int_0^{2\pi} \frac{d\phi}{2\pi} E \frac{dN}{d^3 p} \cos n\phi}{\int_0^{2\pi} \frac{d\phi}{2\pi} E \frac{dN}{d^3 p}}$

using saddle-point approximations (or the steepest-descent method) N.B. & J.-Y. Ollitrault, **nucl-th/0506045**

Fluid rapidity profiles

Kolb & Heinz, nucl-th/0305084 of impact parameter)

Slow particles $(p_t/m < u_{\text{max}}(\frac{\pi}{2}))$ move together with the fluid

There is a point where the fluid velocity equals the particle velocity

 \rightarrow saddle-point approximation! Integrand in the momentum spectrum is <u>Gaussian</u>, with width $(p^{\mu}u_{\mu})_{\text{min}}^{1/2} = \sqrt{m}$

Similar spectra for different hadrons: \boldsymbol{E} $E\frac{\mathrm{d}N}{\mathrm{d}^3\mathbf{p}} = c^h(m)\, f\Big(\frac{p_t}{m}, y, \phi\Big)$ $v_n\left(\frac{p_t}{m}, y\right)$ universal! \Rightarrow mass-ordering of $v_2(p_t, y)$

Fast particles $(p_t/m > u_{\text{max}}(0))$ move faster than the fluid

Particle comes from where the fluid is fastest along the direction of its velocity:

 $(p^{\mu}u_{\mu})_{\min} = m_t\sqrt{1 + u_{\max}(\phi)^2} > m$ Saddle-point approximation around \boldsymbol{E} $E\frac{\mathrm{d}N}{\mathrm{d}^2\mathbf{p}_t\,\mathrm{d}y} \propto \frac{1}{\sqrt{p_t - m_t v_{\max}}}$ $\exp\left(\frac{p_tu_{\text{max}}-m_tu_{\text{max}}^0}{T_{\text{f.c}}}\right)$

(If the point where the minimum is reached lies on the border of Σ , use the steepest-descent method \Rightarrow no $\sqrt{}$

Fast particles $(p_t/m > u_{\text{max}}(0))$ move faster than the fluid

Particle comes from where the fluid is fastest along the direction of its velocity: u xuy $(p^{\mu}u_{\mu})_{\min} = \frac{m_t\sqrt{1 + u_{\max}(\phi)^2}}{m} > m$ Saddle-point approximation around - \boldsymbol{E} $E\frac{\mathrm{d}N}{\mathrm{d}^2\mathbf{p}_t\,\mathrm{d}y} \propto \frac{1}{\sqrt{p_t - m_t v_{\max}}}$ $\exp\left(\frac{p_tu_{\max} - m_tu_{\max}^{\upsilon}}{T_{\text{f.o.}}}\right)$ $v_2(p_t) \propto \frac{u_{\text{max}}}{T_{\text{f.o.}}} (p_t - m_t v_{\text{max}})$ \Rightarrow mass-ordering of $v_n(p_t)$ $v_4(p_t) = \frac{v_2(p_t)^2}{2}$

What can be found in **nucl-th/0506045**?

- The first ever distinction between $slow (p_t/m < u_{\text{max}})$ and fast $(p_t/m > u_{\text{max}})$ particles
- $u_{\rm max}$ maximum transverse four-velocity of the expanding fluid \Rightarrow depends on the model: equation of state
- Various model-independent scaling laws, derived within ideal fluid dynamics, for the momentum spectra and anisotropic flow coefficients $(v_2, v_4, ...)$ of both classes of particles
- these scaling laws can be used
	- to test if applying ideal hydro to experimental data is relevant
	- to check ideal fluid dynamics-based black boxes O models

RHIC data: ^a personal choice [1/4]

 $v_2(p_t)$ at midrapidity, minimum bias collisions:

RHIC data: ^a personal choice [2/4]

 $v_2(p_t)$ for various centralities (impact parameters): STAR Collaboration, nucl-ex/0409033 00.05 0.10.15(a) $pion[±]$ b (fm) 9.67.02.4(b) anti-proton Ω 0.05 0.10.150 0.5 1(c) $pion[±]$ 0 0.5 1(d) anti-proton Transverse momentum p_{t} (GeV/c) $>$ $\mathbf{\alpha}$ *Hydro Model* $α = 0.02$ fm *Hydro Model* $\alpha = 0.0$ 0.1 data $\frac{1}{\text{above}}\times\frac{1}{\text{loop}}$ ideal fluid \neq "hydro yields maximum v_2 "

RHIC data: ^a personal choice [3/4]

(Pseudo)rapidity dependence of v_2

STAR Collaboration, nucl-ex/0409033

Hirano & Tsuda, Phys. Rev. C **⁶⁶** (2002) 054905

RHIC data: ^a personal choice [4/4]

Ideal fluid dynamics vs. RHIC data

 $\blacklozenge v_2(p_t)$ hydro \lt data $\spadesuit v_2(y)$ hydro \neq data $\spadesuit \frac{v_4}{(v_2)^2}$ hydro \lt data

is the ideal fluid assumption valid?

Ideal fluid dynamics vs. RHIC data

 $\blacklozenge v_2(p_t)$ hydro \lt data $\spadesuit v_2(y)$ hydro \neq data $\spadesuit \frac{v_4}{(v_2)^2}$ hydro \lt data

what is wrong with ideal fluid scenario?

0.❦Creation of ^a dense gas of particles

1. At some time τ_0 (~ 0.6 fm/c in hydro models), the mean free path λ is much smaller than *all* dimensions in the system \Rightarrow thermalization, ideal fluid dynamics applies

The fluid expands: density decreases, λ increases (system size also)

 (3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

Ideal fluid dynamics vs. RHIC data

 $\blacklozenge v_2(p_t)$ hydro \lt data $\spadesuit v_2(y)$ hydro \neq data $\spadesuit \frac{v_4}{(v_2)^2}$ hydro \lt data

what is wrong with ideal fluid scenario?

0.❦Creation of ^a dense gas of particles

1. At some time τ_0 (~ 0.6 fm/c in hydro models), the mean free path λ is much smaller than *all* dimensions in the system \Rightarrow thermalization, ideal fluid dynamics applies

Is this really true?

What are the length scales in the system at time τ_0 ?

Heavy ion collisions: length scales

At time τ_0 , two possible choices for the system size L which enters Kn $L = c\tau_0$ longitudinal size (strong Lorentz contraction!)

 $L=% \begin{bmatrix} 1\,, & 1\,, & 1\,. \end{bmatrix} \qquad \qquad \sum\limits_{i=1}^{N} \left[\begin{bmatrix} 1\,, & 1\,, & 1\,. \end{bmatrix} \right] \qquad \qquad \sum\limits_{i=1}^{N} \left[\begin{bmatrix} 1\,, & 1\,, & 1\,. \end{bmatrix} \right] \qquad \qquad \sum\limits_{i=1}^{N} \left[\begin{bmatrix} 1\,, & 1\,, & 1\,. \end{bmatrix} \right] \qquad \qquad \sum\limits_{i=1}^{N} \left[\begin{bmatrix} 1\,, & 1\,, & 1\,. \$ = R transverse size (R "reduced" radius, $\frac{1}{R}$ $\frac{1}{R} = \sqrt{\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2}})$

At short times, $\tau_0 \lesssim 1$ fm/c, there are several possibilities:

1. $\lambda \ll c\tau_0$: early thermalization (preferred by most) $2.\ \lambda \sim c\tau_0$ 3. $c\tau_0 \ll \lambda \ll R$: only "transverse" thermalization 4. $\lambda \sim R$ 5. $\lambda \gg R$: "initial state" dominates **THE** $\left\{\n\begin{array}{l}\n\text{Anisotropic flow cannot resolve } 1-3 \\
\text{RHIC data favor } 4\n\end{array}\n\right\}$

Full thermalization vs. transverse thermalization

Full equilibrium (case 1):

- First, make momenta isotropic: produce huge p_t
- **•** Then, longitudinal expansion decreases $p_{\boldsymbol{z}}\colon$ need to decrease p_t also: cooling

No longitudinal equilibrium, transverse equilibrium (cases 3–5):

- Fast longitudinal expansion: longitudinal pressure ~ 0
- Transverse momenta do not change

But only the final p_t are measured, not their time evolution

Full thermalization vs. transverse thermalization

 v_2 cannot distinguish between $\frac{{\rm{full}}}{{\rm{full}}}$ and $\frac{{\rm{only}}}{{\rm{transverse}}}$ equilibration $\rightarrow P_z = 0$: free streaming $P_z=P_x$ *v*20.4 \star 2D-thermalization, $c_s^2 = 1/2$ **3D**-thermalization, $c_s^2 = 1/3$ 0.350.3▃▗▖▞▖▟▗▞▖▟▗▚▖▟▗▚▖▅▗▖▄ 0.250.20.150.10.05 $\frac{c_s t}{R}$ 0.20.4 0.6 0.8 1 1.2 1.4

Anisotropic flow: ^a control parameter

 σ interaction cross section, $n(\tau)$ particle density

Anisotropic flow: ^a control parameter

 σ interaction cross section, $n(\tau)$ particle density, S transverse surface

- 1 $S\,$ $\frac{\mathrm{d}N}{\mathrm{d}y}$ control parameter for v_2 : to vary Kn , one can study
- **P** rapidity dependence
- **C** centrality dependence
-
- System-size dependence \rightarrow importance of lighter systems!
	- **b** beam-energy dependence

RHIC data: incomplete thermalization

RHIC data: incomplete thermalization

Ideal fluidd dynamics predicts $\frac{v_4}{(v_2)^2} = \frac{1}{2}$, RHIC data is above (~ 1.2) increase can be explained by incomplete thermalization In a "one-collision" model, one can show that v_n $v_n \propto \sigma \ \ \Rightarrow \ \ \frac{v_4}{(v_2)^2} \propto \frac{1}{\sigma}$ ${\rm v}_4$ 1 $R/\lambda = 1/Kn$ 1 $R/\lambda = 1/Kn$ ${\rm v}_4$ ${\rm v}_2$ 2 V_{2} 1partially thermalized fully thermalized (hydro) $R/\lambda = 1/Kn$

Anisotropic flow: ^a control parameter

Beam-energy dependence:

NA49 Collaboration, Phys. Rev. C **⁶⁸** (2003) 034903

Scaling law seems to work but data alone does not point to ^a saturation of v_2 as expected from ideal fluid behaviour

For $c_s \gtrsim 0.2$, relativistic effects enter the game (v_2 now depends on c_s)

How can data overshoot the "ideal fluid limit"?

For $c_s \gtrsim 0.2$, relativistic effects enter the game (v_2 now depends on c_s)

How can data overshoot the "ideal fluid limit"?

For $c_s \gtrsim 0.2$, relativistic effects enter the game (v_2 now depends on c_s)

How can data overshoot the "ideal fluid limit"?

For $c_s \gtrsim 0.2$, relativistic effects enter the game (v_2 now depends on c_s)

one can increase v_2 by increasing c_s !

Incomplete thermalization at RHIC

What you will (hopefully) find in the paper(s) in preparation by R.S. Bhalerao, J.-P. Blaizot, N.B. and J.-Y. Ollitrault

- A reminder: the natural time scale for anisotropic flow is $\frac{R}{A}$ c_{s}
	- no knowledge about early times
	- anisotropic flow cannot conclude on transverse equilibration, i.e., full thermalization
- Size of v_2 2 controlled by $\frac{1}{S} \frac{dN}{dy}$ but no hint at saturation in the data incomplete transverse equilibration: $\lambda \sim R$ **LET** anisotropic flow tool to measure λ

■ Predictions for Cu–Cu collisions at RHIC (and for LHC?)