

**Nicolas BORGHINI** 

in collaboration with

R.S. BHALERAO

J.-P. Blaizot

J.-Y. Ollitrault

CERN

### Why heavy ion collisions?

#### Temperature





#### **RHIC Scientists Serve Up "Perfect" Liquid**

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

|                     | Flüssige<br>Dieser Zust                                               |                         |
|---------------------|-----------------------------------------------------------------------|-------------------------|
| BROG                | KHAN Sondern vielmehr wie eine f                                      |                         |
| RHIC                | Scientists Serve Up "Periode Jast ideale Flüssi<br>Physik Journal, In | <sup>2</sup> ale<br>Ske |
| New state questions | of matter more remarkable than predicted raising man                  | e 20                    |
| April 18, 200       | 5                                                                     |                         |







Ideal fluid dynamics reproduce both  $p_t$  spectra and  $v_2(p_t)$  of soft  $(p_t \leq 2 \text{ GeV/c})$  identified particles for minimum bias collisions, near central rapidity.

This agreement necessitates a soft equation of state, and very short thermalization times:  $\tau_{\text{thermalization}} < 0.6 \text{ fm/}c$ .

#### strongly interacting Quark-Gluon Plasma $\Rightarrow$

### **Ideal fluid dynamics** in heavy-ion collisions

- A few reminders on fluid dynamics
- **Fluid dynamics** and heavy ion collisions: theory
  - Overall scenario
  - General predictions of ideal fluid dynamics
    - Momentum spectra
    - Anisotropic flow
- **Fluid dynamics** and heavy ion collisions: theory vs. data
- Reconciling data and theory



### Fluid dynamics: physical quantities

- Microscopic parameters
  - $\lambda$  = mean free path between two collisions
  - $v_{\text{thermal}}$  = average velocity of particles
- Macroscopic parameters
  - L = system size
  - $v_{\text{fluid}} = \text{fluid}$  velocity
- Micro and macro are connected: kinetic theory
  - $c_s =$ sound velocity  $\sim v_{\text{thermal}}$

### Fluid dynamics: various types of flow



#### Fluid dynamics: various types of flow

#### Three numbers:

$$Kn = \frac{\lambda}{L}, \qquad Re = \frac{Lv_{\text{fluid}}}{\eta}, \qquad Ma = \frac{v_{\text{fluid}}}{c_s}$$

 $\Rightarrow$  an important relation:

$$Kn \times Re = \frac{\lambda v_{\text{fluid}}}{\eta} \sim \frac{v_{\text{fluid}}}{c_s} = Ma$$

Compressible fluid: Thermalized means Ideal

Viscosity  $\equiv$  departure from equilibrium

### **General scenario** of a heavy-ion collision

 $\bigcirc$  Creation of a dense gas of particles

(1) At some time  $\tau_0$ , the mean free path  $\lambda$  is much smaller than *all* dimensions in the system

 $\Rightarrow$  thermalization ( $T_0$ ), ideal fluid dynamics applies

2) The fluid expands: density decreases,  $\lambda$  increases (system size also)

(3) At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

"(kinetic) freeze-out"

Freeze-out usually parameterized in terms of a temperature  $T_{\rm f.o.}$ 

If the mean free path varies smoothly with temperature, consistency requires  $T_{\rm f.o.} \ll T_0$ 

### **General scenario of a heavy-ion collision**

To build a model (for comparison with experimental data), one needs



on a space-like hypersurface, one specifies

- energy density
- transverse velocity
- Iongitudinal velocity

• a freeze-out temperature  $T_{f.o.}$  (or a freeze-out criterion)

**I** computation of several observables

#### Heavy-ion collisions: Momentum spectra

At freeze-out, particles are emitted according to thermal distributions (Bose–Einstein, Fermi–Dirac) boosted with the <u>fluid velocity</u>:

$$E\frac{\mathrm{d}N}{\mathrm{d}^{3}\mathbf{p}} = C \int_{\Sigma} \exp\left(-\frac{p^{\mu}\boldsymbol{u}_{\mu}^{\prime}(x)}{T_{\mathrm{f.o.}}}\right) p^{\mu} \,\mathrm{d}\sigma_{\mu}$$
  
freeze-out hypersurface particle momentum

Remark: In the following, I shall use Boltzmann distributions!

("Quantum" effects may only affect pions at very low transverse momentum, where their spectrum is anyway contaminated by decay products)

#### Heavy-ion observable: Anisotropic flow



Initial anisotropy of the source (in the transverse plane)

 $\Rightarrow$  anisotropic pressure gradients, larger along the impact parameter  $\vec{b}$ 

 $\Rightarrow$  anisotropic emission of particles:

anisotropic (collective) flow

$$E\frac{\mathrm{d}N}{\mathrm{d}^{3}\mathbf{p}} \propto \frac{\mathrm{d}N}{p_{t}\,\mathrm{d}p_{t}\,\mathrm{d}y} \Big[1 + 2\frac{v_{1}}{2}\cos(\phi - \Phi_{R}) + 2\frac{v_{2}}{2}\cos 2(\phi - \Phi_{R}) + \dots\Big]$$

measure pressure effects  $\Rightarrow$  equation of state

Consistent ideal fluid dynamics picture requires  $T_{\rm f.o.} \ll T_0$  $\Leftrightarrow$ Ideal-fluid limit =  $T_{f_0} \rightarrow 0$  limit IF one can compute in a model-independent way • the spectrum  $E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} = C \int_{\Sigma} \exp\left(-\frac{p^{\mu} u_{\mu}(x)}{T_{\mathrm{f},0}}\right) p^{\mu} \mathrm{d}\sigma_{\mu}$ • the anisotropic flow  $v_n = \frac{\int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} \cos n\phi}{\int_0^{2\pi} \frac{\mathrm{d}\phi}{2\pi} E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}}}$ 

using saddle-point approximations (or the steepest-descent method) N.B. & J.-Y. Ollitrault, nucl-th/0506045



#### Fluid rapidity profiles



(velocity larger along the direction of impact parameter)

Slow particles  $(p_t/m < u_{\max}(\frac{\pi}{2}))$  move together with the fluid



There is a point where the fluid velocity equals the particle velocity

Integrand in the momentum spectrum is <u>Gaussian</u>, with width  $(p^{\mu}u_{\mu})_{\min}^{1/2} = \sqrt{m}$ saddle-point approximation!

Similar spectra for different hadrons:
 E dN/d<sup>3</sup>p = c<sup>h</sup>(m) f(pt/m, y, φ)
 v<sub>n</sub>(pt/m, y) universal!
 ⇒ mass-ordering of v<sub>2</sub>(pt, y)

Fast particles  $(p_t/m > u_{max}(0))$  move faster than the fluid

Particle comes from where the fluid is fastest along the direction of its velocity:



 $(p^{\mu}u_{\mu})_{\min} = \underline{m_t}\sqrt{1 + u_{\max}(\phi)^2} > m$ Saddle-point approximation around  $\mathbf{I} = E \frac{\mathrm{d}N}{\mathrm{d}^2\mathbf{p}_t \,\mathrm{d}y} \propto \frac{1}{\sqrt{p_t - m_t v_{\max}}} \\ \exp\left(\frac{p_t u_{\max} - m_t u_{\max}^0}{T_{\mathrm{f.o.}}}\right)$ 

(If the point where the minimum is reached lies on the border of  $\Sigma$ , use the steepest-descent method  $\Rightarrow$  no  $\sqrt{}$ )

Fast particles  $(p_t/m > u_{max}(0))$  move faster than the fluid

Particle comes from where the fluid is fastest along the direction of its velocity:



$$(p^{\mu}u_{\mu})_{\min} = \underline{m_t}\sqrt{1 + u_{\max}(\phi)^2} > m$$
Saddle-point approximation around
$$\mathbf{E} \frac{dN}{d^2\mathbf{p}_t dy} \propto \frac{1}{\sqrt{p_t - m_t v_{\max}}} \\ \exp\left(\frac{p_t u_{\max} - m_t u_{\max}^0}{T_{\text{f.o.}}}\right)$$

$$\mathbf{v}_2(p_t) \propto \frac{u_{\max}}{T_{\text{f.o.}}}(p_t - m_t v_{\max}) \\ \Rightarrow \text{ mass-ordering of } v_n(p_t)$$

$$\mathbf{v}_4(p_t) = \frac{v_2(p_t)^2}{2}$$

What can be found in nucl-th/0506045?

- The first ever distinction between slow ( $p_t/m < u_{max}$ ) and fast ( $p_t/m > u_{max}$ ) particles
- If  $u_{\text{max}}$  maximum transverse four-velocity of the expanding fluid  $\Rightarrow$  depends on the model: equation of state
- Solution Various model-independent scaling laws, derived within ideal fluid dynamics, for the momentum spectra and anisotropic flow coefficients  $(v_2, v_4, ...)$  of both classes of particles
- IF these scaling laws can be used
  - **•** to test if applying ideal hydro to experimental data is relevant
  - to check ideal fluid dynamics-based black boxes models

### RHIC data: a personal choice [1/4]

 $v_2(p_t)$  at midrapidity, minimum bias collisions:

STAR Collaboration, nucl-ex/0409033



### RHIC data: a personal choice [2/4]

 $v_2(p_t)$  for various centralities (impact parameters): STAR Collaboration, nucl-ex/0409033 (a)  $pion^{\pm}$ (b) anti-proton 0.15 b (fm) 9.6 0.1 Hydro Model α **= 0.0** 0.05 0 data <u>above</u>><sup>∞</sup> (c)  $pion^{\pm}$ (d) anti-proton 0.15 ideal fluid 0.1 Hydro Model  $\alpha = 0.02 \, fm$ "hydro yields 0.05 maximum  $v_2$ " 0 0.5 0 0 0.5 1 Transverse momentum p<sub>+</sub> (GeV/c)

#### RHIC data: a personal choice [3/4]

#### (Pseudo)rapidity dependence of $v_2$

STAR Collaboration, nucl-ex/0409033



#### Hirano & Tsuda, Phys. Rev. C **66** (2002) 054905



#### RHIC data: a personal choice [4/4]



### **Ideal fluid dynamics vs. RHIC data**

 $v_2(p_t) \text{ hydro } < \text{ data}$   $v_2(y) \text{ hydro } \neq \text{ data}$   $v_2(y) \text{ hydro } \neq \text{ data}$   $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{ data}$ 

> is the ideal fluid assumption valid?

### Ideal fluid dynamics vs. RHIC data

 $v_2(p_t) \text{ hydro } < \text{ data}$   $v_2(y) \text{ hydro } \neq \text{ data}$   $v_2(y) \text{ hydro } \neq \text{ data}$   $v_4 \frac{v_4}{(v_2)^2} \text{ hydro } < \text{ data}$ 

what is wrong with ideal fluid scenario?

0. Creation of a dense gas of particles

(1) At some time  $\tau_0$  (~ 0.6 fm/c in hydro models), the mean free path  $\lambda$  is much smaller than *all* dimensions in the system  $\Rightarrow$  thermalization, ideal fluid dynamics applies

2) The fluid expands: density decreases,  $\lambda$  increases (system size also)

3. At some time, the mean free path is of the same order as the system size: ideal fluid dynamics is no longer valid

### **Ideal fluid dynamics vs. RHIC data**

 $\mathbf{0} \mathbf{v}_{2}(p_{t}) \text{ hydro } < \text{ data }$   $\mathbf{0} \mathbf{v}_{2}(y) \text{ hydro } \neq \text{ data }$   $\mathbf{0} \frac{v_{4}}{(v_{2})^{2}} \text{ hydro } < \text{ data }$ 

> what is wrong with ideal fluid scenario?

0. Creation of a dense gas of particles

(1) At some time  $\tau_0$  (~ 0.6 fm/c in hydro models), the mean free path  $\lambda$  is much smaller than *all* dimensions in the system  $\Rightarrow$  thermalization, ideal fluid dynamics applies

Is this really true?

What are the length scales in the system at time  $\tau_0$ ?

#### **Heavy ion collisions:** length scales

At time  $\tau_0$ , two possible choices for the system size L which enters Kn $I = c\tau_0$  longitudinal size (strong Lorentz contraction!)

• L = R transverse size (*R* "reduced" radius,  $\frac{1}{R} = \sqrt{\frac{1}{\sigma_x^2} + \frac{1}{\sigma_y^2}}$ )

At short times,  $\tau_0 \leq 1$  fm/c, there are several possibilities:

1.  $\lambda \ll c\tau_0$ : early thermalization (preferred by most) 2.  $\lambda \sim c\tau_0$ 3.  $c\tau_0 \ll \lambda \ll R$ : only "transverse" thermalization 4.  $\lambda \sim R$ 5.  $\lambda \gg R$ : "initial state" dominates Anisotropic flow cannot resolve 1–3 RHIC data favor 4 **1** 

#### **Full thermalization vs. transverse thermalization**

#### Full equilibrium (case 1):

- First, make momenta isotropic: produce huge  $p_t$
- Then, longitudinal expansion decreases  $p_z$ : need to decrease  $p_t$  also: cooling

No longitudinal equilibrium, transverse equilibrium (cases 3–5):

- Fast longitudinal expansion: longitudinal pressure  $\sim 0$
- Transverse momenta do not change



But only the final  $p_t$  are measured, not their time evolution

#### **Full thermalization vs. transverse thermalization**

 $v_2$  cannot distinguish between <u>full</u> and <u>only transverse</u> equilibration  $ightarrow P_z = 0$ : free streaming  $P_z = P_x = P_u \checkmark$  $v_2$ 0.4 ★ 2D-thermalization,  $c_s^2 = 1/2$ • 3D-thermalization,  $c_s^2 = 1/3$ 0.35 \*\*\*\* 0.3 0.25 0.2 0.15 0.1 0.05  $\frac{c_s t}{R}$ 1.4 0.2 0.4 0.6 0.8 1 1.2



The natural time scale for  $v_2$  is  $R/c_s$ : massless particles  $c_s^2 = \frac{1}{3}$  $\frac{v_2}{\epsilon}$ Impact parameter dependence  $\star$  b=2 b=40.8 NT TO A DATA DATA DATA 0.6 0.4 0.2  $\frac{c_s t}{3}$ 2.5 0.5 1 1.5 2

The natural time scale for  $v_2$  is  $R/c_s$ : massless particles  $c_s^2 = \frac{1}{3}$  $\frac{v_2}{\epsilon}$ Impact parameter dependence ★ b=2 b=4h=60.8 W. The second 0.6 0.4 0.2  $\frac{c_s t}{3} \frac{c_s t}{R}$ 2.5 0.5 1 1.5 2





The natural time scale for  $v_2$  is  $R/c_s$ : massless particles  $c_s^2 = \frac{1}{3}$  $\frac{v_2}{\epsilon}$ Impact parameter dependence b=2h=4h=60.8 h=8b = 10b = 120.6 0.4 0.2  $\frac{c_s t}{3}$ 2.5 0.5 1.5 2 1  $v_2$  knows nothing about early times!

#### **Anisotropic flow: a control parameter**



 $\sigma$  interaction cross section,  $n(\tau)$  particle density

#### **Anisotropic flow:** a control parameter



 $\sigma$  interaction cross section,  $n(\tau)$  particle density, S transverse surface

- If  $\frac{1}{S} \frac{\mathrm{d}N}{\mathrm{d}u}$  control parameter for  $v_2$ : to vary Kn, one can study
  - rapidity dependence
  - centrality dependence
- - **System**-size dependence  $\rightarrow$  importance of lighter systems!
    - beam-energy dependence

#### **RHIC data: incomplete thermalization**



N. BORGHINI - p.27/31

#### **RHIC data: incomplete thermalization**

Ideal fluid dynamics predicts  $\frac{v_4}{(v_2)^2} = \frac{1}{2}$ , RHIC data is above (~ 1.2) Is increase can be explained by incomplete thermalization In a "one-collision" model, one can show that  $v_n \propto \sigma \Rightarrow \frac{v_4}{(v_2)^2} \propto \frac{1}{\sigma}$  $v_2$  / fully thermalized (hydro) partially thermalized  $R/\lambda = 1/Kn$ v₄ ≬  $R/\lambda = 1/Kn$ 1  $R/\lambda = 1/Kn$ 

#### **Anisotropic flow: a control parameter**





NA49 Collaboration, Phys. Rev. C 68 (2003) 034903

Scaling law seems to work but data alone does not point to a saturation of  $v_2$  as expected from ideal fluid behaviour







How can data overshoot the "ideal fluid limit"?



For  $c_s \gtrsim 0.2$ , relativistic effects enter the game ( $v_2$  now depends on  $c_s$ )

How can data overshoot the "ideal fluid limit"?



For  $c_s \gtrsim 0.2$ , relativistic effects enter the game ( $v_2$  now depends on  $c_s$ )



For  $c_s \gtrsim 0.2$ , relativistic effects enter the game ( $v_2$  now depends on  $c_s$ )

How can data overshoot the "ideal fluid limit"?



For  $c_s \gtrsim 0.2$ , relativistic effects enter the game ( $v_2$  now depends on  $c_s$ )

If one can increase  $v_2$  by increasing  $c_s$ !

### **Incomplete thermalization at RHIC**

What you will (hopefully) find in the paper(s) in preparation by R.S. Bhalerao, J.-P. Blaizot, N.B. and J.-Y. Ollitrault

- A reminder: the natural time scale for anisotropic flow is  $\frac{R}{c_s}$ 
  - no knowledge about early times
  - anisotropic flow cannot conclude on transverse equilibration,
     i.e., full thermalization
- Size of  $v_2$  controlled by  $\frac{1}{S} \frac{dN}{dy}$  but no hint at saturation in the data incomplete transverse equilibration:  $\lambda \sim R$ is anisotropic flow tool to measure  $\lambda$
- $v_2$  overshoots the hydro prediction... because there is a crossover, not a first-order phase transition
  - Predictions for Cu–Cu collisions at RHIC (and for LHC?)