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Why heavy ion collisions?
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RHIC Au-Au results:
the fashionable view
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RHIC Au-Au results:
the fashionable view
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Ideal fluid dynamics reproduce both p; spectra and v (p;) of soft

(p+ < 2 GeV/c) identified particles for minimum bias collisions, near
central rapidity.

This agreement necessitates a soft equation of state, and very short
thermalization times: Tihermalization << 0.6 fm/c.

— strongly interacting Quark-Gluon Plasma
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Ideal fluid dynamics
in heavy-ion collisions

A few reminders on fluid dynamics

Fluid dynamics and heavy 1on collisions: theory

Overall scenario
General predictions of ideal fluid dynamics

Momentum spectra

Anisotropic flow

Fluid dynamics and heavy 1on collisions: theory vs. data

Reconciling data and theory
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Fluid dynamics:
physical quantities

Microscopic parameters

A = mean free path between two collisions
Vthermal = average velocity of particles

Macroscopic parameters

L = system size
VAuiq = fluid velocity

Micro and macro are connected: kinetic theory

cs = sound velocity ~ Vihermal
1) = VISCOSItY ~ A Uthermal
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Fluid dynamics:
various types of flow

A

Thermodynamic equilibrium? ¥ Knudsen number Kn = 7

Kn > 1. Ballistic (free-streaming) limit
Kn < 1: Thermalization : Fluid (hydro) limit

Lugy;

Viscous or Ideal? D&~ Reynolds number Re = ——2¢
n
Re >> 1: Ideal (non-viscous) fluid
Re < 1: Viscous fluid

U .
Compressible or Incompressible? & Mach number Ma = — 24

Cs

Ma < 1: Incompressible fluid
Ma > 1. Compressible (supersonic) fluid
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Fluid dynamics:
various types of flow

Three numbers:

A Lv VAui
Kn — 2 Re — ﬂu1d7 Ma — fluid
L n Cs
—> an important relation:
1 )\ VAui V13
f Kn x Re — uid N fluid — Ma

Ui Cs

Compressible fluid: Thermalized means Ideal

Viscosity = departure from equilibrium
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General scenario
of a heavy-ion collision

Bielefeld, June 16, 2005

Creation of a dense gas of particles

(1) At some time 79, the mean free path X is much smaller than all
dimensions in the system
= thermalization (1), ideal fluid dynamics applies

@ The fTuid expands: density decreases, A increases (system size also)

(3) At some time, the mean free path is of the same order as the system
size: ideal fluid dynamics 1s no longer valid

“(kinetic) freeze-out”

Freeze-out usually parameterized in terms of a temperature 7%

If the mean free path varies smoothly with temperature, consistency
requires 1 , < 1y
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General scenario
of a heavy-ion collision

To build a model (for comparison with experimental data), one needs

an equation of state:

energy density
{ dP
pressure —> P = f(E ) d_ — Cs2
€

\speed of sound

initial conditions:
on a space-like hypersurface, one specifies
energy density

transverse velocity

longitudinal velocity

a freeze-out temperature 77 , (or a freeze-out criterion)

IS~ computation of several observables
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Heavy-ion collisions:
Momentum spectra

At freeze-out, particles are emitted according to thermal distributions
(Bose—Einstein, Fermi—Dirac) boosted with the fluid velocity:

N 7
Ed— = C/exp(—p uﬂ(az)> p"doy,
>

dgp Tf.o.

yd particle momentum
freeze-out hypersurface

Remark: In the following, I shall use Boltzmann distributions!

(“Quantum” effects may only affect pions at very low transverse momentum,
where their spectrum is anyway contaminated by decay products)
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Heavy-ion observable:
Anisotropic flow

Non-central collision: Initial anisotropy of the source

(in the transverse plane)

= anisotropic pressure gradients,
larger along the impact parameter b

= anisotropic emission of particles:

anisotropic (collective) flow

dN dN
F— [1+2ﬂ€08(¢—@3)—I—QU_QCOSZ(QS—(I)R)—I—...

d3p  pedpy dy \ /

measure pressure effects = equation of state
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Ideal fluid dynamics:
general predictions

Consistent ideal fluid dynamics picture requires 1r, << 1g
=
Ideal-fluid Iimit = 7¢ , — 0O limit

¥~ one can compute in a model-independent way

dN H
the spectrum £ —— = C/ exp (_p u,,(:z:)) p"doy,
5

| d3p Tf.o.
2
"d dN
/ e ) COS N
. . 0 27 d3p
the anisotropic flow v,, = 5
/ Tdo > dN
o 2w d3p

using saddle-point approximations (or the steepest-descent method)

N.B. & J.-Y. Ollitrault, nucl-th/0506045
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Ideal fluid dynamics:
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general predictions

Fluid rapidity profiles

Profile in non-central collisions

Uy

e
N

(velocity larger along the direction
Kolb & Heinz, nucl-th/0305084 of impact parameter)
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Ideal fluid dynamics:
general predictions

Slow particles (p;/m < ,,.<(5)) move together with the fluid

There i1s a point where the fluid velocity
equals the particle velocity

IF" Integrand in the momentum spectrum
is Gaussian, with width (p*u,)Y/2 = \/m

min
——saddle-point approximation!

K/ u Similar spectra for different hadrons:

) dN

B = c"(m) f(%,y,cb)

Pt :
Un (—, y) universal!
m

= mass-ordering of vs(py, y)
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Ideal fluid dynamics:
general predictions

Fast particles (p;/m > 1,,..(0)) move faster than the fluid

Particle comes from where (P"'1/:)min = 1 \/1 + \I\LmaX(ﬁb)Q > m
the fluid is fastest along the
direction of its velocity:

Uy E

Saddle-point approximation around )
dN 1

X
d2pt dy \/pt — MtUmax

0
eXp <ptumax T mt“max)
Tf.o.

/ (If the point where the minimum is reached lies on the
\/ U  border of >, use the steepest-descent method = no , /- )
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Ideal fluid dynamics:

Fast particle

general predictions

s (p¢/m > 1.+(0)) move faster than the fluid

Particle comes from where (P/)min = 1t \/ 1 + \I\bmax(qb)Q >m

the fluid is fastest along the
direction of its velocity:

Saddle-point approximation around )
dN 1

X
d2pt dy \/pt — MtUmax
0
eXp <pt ma t ma, )

Uy E

e
N

It
Umax
u, U2 (pt) X Tr;i. (pt — mtvmax)
= mass-ordering of v,, (p;)
va(py)?

(O (pt) — 9
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Ideal fluid dynamics:
general predictions

What can be found in nucl-th/05060457?

The first ever distinction between slow (p;/m < ,,,.+) and fast
(pt/m > Umay) particles

D& 1, maximum transverse four-velocity of the expanding fluid

= depends on the model: equation of state

Various model-independent scaling laws, derived within ideal
fluid dynamics, for the momentum spectra and anisotropic flow
coefficients (vo, v4, ...) of both classes of particles

IE" these scaling laws can be used

to test if applying ideal hydro to experimental data is relevant

to check ideal fluid dynamics-based blackboxes
models
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RHIC data:
a personal choice [1/4]

vo(p¢) at midrapidity, minimum bias collisions:
STAR Collaboration, nucl-ex/0409033
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RHIC data:
a personal choice [2/4]

parameters):
aboration, nucl ex/04 09033
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v, (%)

(Pseudo)rapidity dependence of v»
STAR Collaboration,

RHIC data:

nucl-ex/0409033
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a personal choice [3/4]

Hirano & Tsuda,
Phys. Rev. C 66 (2002) 054905
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RHIC data:
a personal choice [4/4]

U4

(v2)?
STAR Collaboration, nucl-ex/0409033

Transverse momentum dependence of

ideal fluid
prediction
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Ideal fluid dynamics
vs. RHIC data

#® v5(p) hydro < data \

A v2(y) hydro # data % ¢ the ideal fluid assumption valid?
(V)

o — 5 hydro < data
(v2) )
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Ideal fluid dynamics
vs. RHIC data

#® v5(p) hydro < data )

A v2(y) hydro # data > what is wrong with ideal fluid scenario?
v

o — 5 hydro < data
(v2) )

Creation of a dense gas of particles

(1) At some time 7y (~ 0.6 fm/c in hydro models), the mean free path
A 1s much smaller than all dimensions in the system

= thermalization, ideal fluid dynamics applies
@ The fluid expands: density decreases, A increases (system size also)

@ At some time, the mean free path is of the same order as the system
size: ideal fluid dynamics 1s no longer valid
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Ideal fluid dynamics
vs. RHIC data

#® v5(p) hydro < data )

A v2(y) hydro # data > what is wrong with ideal fluid scenario?
v

o — 5 hydro < data
(v2) )

Creation of a dense gas of particles

(1) At some time 7y (~ 0.6 fm/c in hydro models), the mean free path
A 1s much smaller than all dimensions in the system
= thermalization, ideal fluid dynamics applies

Is this really true?

What are the length scales in the system at time 7¢?
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Heavy 1on collisions:
length scales

At time 7p, two possible choices for the system size L which enters Kn

L. = c7p longitudinal size (strong Lorentz contraction!)

1 1 1
L. = R transverse size (R “reduced” radius, — = \/ — + =)
R oz O,

At short times, 79 < 1 fm/c, there are several possibilities:

1. A\ < c7g : early thermalization (preferred by most)
2.\~ cTy 0

3.c19 € A < R : only “transverse” thermalization
4. A~ R

5. A > R: “initial state” dominates

RHIC data favor 4
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Full thermalization vs.
transverse thermalization

No longitudinal equilibrium,
transverse equilibrium (cases 3-5):

Full equilibrium (case 1):

First, make momenta
isotropic: produce huge p; Fast longitudinal expansion:

Then, longitudinal expansion longitudinal pressure ~ 0

decreases p.: need to decrease Transverse momenta do not
p; also: cooling change

P, 1 Py P, 1 Pt

13 -1/3
t t

t

1 1
T . T . t T t T t
thermalization thermalization ~ “co lison. - co lision

But only the final p; are measured, not their time evolution
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Full thermalization vs.
transverse thermalization

v cannot distinguish between full and only transverse equilibration

P, =P, =P, - —~ P, = 0: free streaming
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Dependence of v5 on
centrality

massless particles
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Dependence of v, on

The natural time scale for v is R/cs:
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Dependence of v5 on
centrality

The natural time scale for v is R/cs: massless particles

v 2 =1

€ Impact parameter dependence § 3

0.8 r

, —— R LSS
0e | ‘W‘n

02 r ) 3
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Dependence of v5 on
centrality

The natural time scale for v is R/cs:
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Dependence of v5 on
centrality

The natural time scale for v is R/cs: massless particles

v2 2 =1
€ Impact parameter dependence S 3
LT w2
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Dependence of v5 on
centrality

The natural time scale for v is R/cs: massless particles
V2 2 1
= C —
€ Impact parameter dependence § 3
)

m h=4
0g | P70
L & b=8 g oo?® nxnxn % % .x
x  b=10 o 9 ¢ x XKgun
; o H=12 o I:|x ¢
i 0.6 ] o “

04 r

1 15 2 25 3 R

v2 knows nothing about early times!
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Anisotropic flow:
a control parameter

The natural time scale for vs is R/c,

o . Vo fully thermalized (hydro)
= number of collisions to build up vs: y
1 N R Ro n(T) ~- partially thermalized
Kn o esh Cs 1 R/A =1/Kn

o interaction cross section, n(7) particle density
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Anisotropic flow:
a control parameter

Bielefeld, June 16, 2005

The natural time scale for v5 is R/cs v, fully thermalized (hydro)
= number of collisions to build up vs: /

1 R Ron(T) c odN Kpartially thermalized

Y Y

Kn ¢ cs ¢S dy 1 R/A =1/Kn

o interaction cross section, n(7) particle density, S transverse surface

1dN
IE" — —— control parameter for vo: to vary Kn, one can study

S dy
rapidity dependence
centrality dependence

system-size dependence — importance of lighter systems!

beam-energy dependence
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(Pseudo)rapidity dependence of v»

v, (%)

RHIC data:

incomplete thermalization

STAR Collaboration,
nucl-ex/0409033
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IE" can be explained by incomplete thermalization

Hirano, Phys. Rev. C 65 (2002) 011901
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RHIC data:
incomplete thermalization

Bielefeld, June 16, 2005

. . . (U 1 .
Ideal fluid dynamics predicts (0,)? =3 RHIC data is above (~ 1.2)
U2
IE" increase can be explained by incomplete thermalization
(14 e 29 v4 1
In a “one-collision” model, one can show that v,, x 0 = ()2 X —
(99) O
Vo fully thermalized (hydro)
y
V4
=~ partially thermalized "2 K
! \)
1 R/A\ =1/Kn
\ ¥ |
1 R/A =1/Kn

-

1 R/A\ =1/Kn
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Anisotropic flow:
a control parameter

Beam-energy dependence:

w
\N AL L L L L B
> 0.25 HYDRO limits -]
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i 5 ‘}. i%&" ]
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0.05 B |'_}| —sfe— \5,,=130 GeV, STAR ]
C f —fe— \[5y =200 GeV, STAR Prelim. ]
0....I....I....I ...................

0 5 10 15 20 25 30 35
(1/S) dN_, /dy
NA49 Collaboration, Phys. Rev. C 68 (2003) 034903

Scaling law seems to work but data alone does not point to a saturation
of v9 as expected from i1deal fluid behaviour
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

Variation with ¢,

lf * ¢,=0.05
0.8 |
06 |

04 -

02 +
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

Variation with ¢

1
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m =01
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

Variation with ¢

1 ¢

| *x ¢,=005

m =01

08 | A ¢,=0.15
0.6 |
04 |

02 r
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

V2

€ Variation with ¢
¢s=0.05

c=0.1

c=0.15

cs=0.2

1 ¢

e » H ¥

08 r

0.6 +

For c; = 0.2, relativistic effects enter the game (v now depends on cy)

Bielefeld, June 16, 2005 N. BORGHINI— p.30/31



Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

V2

€ Variation with ¢,
¢y=0.05

c=0.1

c=0.15
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08 r
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For c; = 0.2, relativistic effects enter the game (v now depends on cy)
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid limit”?
V2
€ Variation with ¢
by ¢;,=0.05

c=0.1

c=0.15

cs=0.2

c;=03

06 | ;=04

08 r
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For c; = 0.2, relativistic effects enter the game (v now depends on cy)
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Dependence of v
on the speed of sound

How can data overshoot the “ideal fluid Iimit”?

€ Variation with ¢
1 -

08 r

o X & » H X}
o
“
I
o
—
)}

0.6 ; Cs:0.4

For c; = 0.2, relativistic effects enter the game (v now depends on cy)

IZ~ one can increase vy by increasing cg!
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Incomplete thermalization
at RHIC

What you will (hopefully) find in the paper(s) in preparation by
R.S. Bhalerao, J.-P. Blaizot, N.B. and J.-Y. Ollitrault
R

A reminder: the natural time scale for anisotropic flow 1s —
Cs

no knowledge about early times

anisotropic flow cannot conclude on transverse equilibration,
1.e., full thermalization

1 dN
Size of v controlled by 5 d—but no hint at saturation in the data
Y
incomplete transverse equilibration: A ~ R

IE" anisotropic flow tool to measure A

v overshoots the hydro prediction... because there is a crossover,
not a first-order phase transition

Predictions for Cu—Cu collisions at RHIC (and for LHC?)
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