Heavy ions at the LHC: personal predictions & overview of the CERN TH Institute

Nicolas BORGHINI

Universität Bielefeld

Heavy ion collisions at the LHC

• "Personal" predictions:

mostly, agnostic extrapolations of trends observed in the data N.B., U.A.Wiedemann, arXiv:07070564 [hep-ph]

• CERN Theory Institute:

Heavy Ion Collisions at the LHC Last Call for Predictions Monday May 14th to Friday June 8th 2007 organized by N.Armesto, N.B., S.Jeon & U.A.Wiedemann

http://fpaxpl.usc.es/nestor/predhiclhc.html

What are the more elaborate predictions of the community? (19 seminars + 85 talks... I shall present a biased overview!)

Heavy ion collisions at the LHC

When at last the accelerator people inject Pb⁸²⁺ nuclei into the LHC, what will ALICE, ATLAS and CMS first measure?

the multiplicity of charged particles

... as a function of the position in their detectors

pseudorapidity
$$\eta \equiv -\ln \tan\left(\frac{\theta}{2}\right) = \frac{1}{2}\ln\left(\frac{|\mathbf{p}| + p_z}{|\mathbf{p}| - p_z}\right)$$

(z beam axis)

What is the multiplicity of charged hadrons at midrapidity $\eta = y = 0$? (i.e., hadrons emitted at $\theta = 90^{\circ}$ from the beam)

A number... not so trivial to predict: cf. the range of RHIC predictions... and the measured value (taken from K.Eskola @ QM'01)

Au-Au collisions 0-6% centrality

Au-Au collisions 0-6% centrality

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 4/29 Universität Bielefeld

The naive extrapolation of RHIC data yields $\frac{dN^{ch}}{d\eta} \approx 100$ at $\eta = 0$ IF $\ln \sqrt{s_{_{NN}}}$ -increase, in opposition to conventional power-law rise

- Hijing + baryon junctions: 3500
- EPOS (multiple scattering): 2500
- pQCD minijets + saturation(EKRT) of produced gluons: 2570
- AMPT (Hijing+ZPC): ≈2500
- Percolating strings:
 - ❑ DMPJET III: ≈1900
 - Pajares et al.: 1500-1600
- a 2-component + shadowing: ≈1700

- "Geometric scaling" (Armesto, Salgado, Wiedemann): 1700–1900
- Gluon saturation (Kharzeev,Levin, Nardi 2000-05): 1800-2100
- B-K eq.+ running coupling
 (Albacete, Kovchegov): ≈1400
- "CGC" (Gelis, Stasto, Venugopalan): 1000-1400
- ALCOR (quark-antiquark plasma + recombination): 1250–1830 = $\frac{dN^{ch}}{du}$

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 6/29 Universität Bielefeld

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 7/29 Universität Bielefeld

Saturating the saturation scale Q_s^2 ?

Heavy ion collisions at the LHC

Then our experimental friends will get to know their detectors better and provide us with

the p_T -spectra of charged particles

(not much to say... the spectra will be stiffer — "more radial flow" — than at RHIC)

the relative abundances ("chemistry") of identified hadrons

Hadrochemistry

From SIS@GSI energies onwards, the relative abundances of hadrons are well described by a statistical distribution: 2 parameters T, μ_B

N.Borghini - 10/29

Universität Bielefeld

Hadrochemistry

From SIS@GSI energies onwards, the relative abundances of hadrons are well described by a statistical distribution: 2 parameters T, μ_B

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 10/29

Universität Bielefeld

Heavy ion collisions at the LHC

The data from the first year (= month) of Pb-Pb collisions will be sufficient to obtain measurements of

the anisotropy in particle emission "anisotropic collective flow"

Consider a non-central collision:

anisotropy of the source (in the plane transverse to the beam)

⇒ anisotropic emission of particles "anisotropic collective flow"

$$E \frac{\mathrm{d}N}{\mathrm{d}^3 \mathbf{p}} \propto \frac{\mathrm{d}N}{p_T \,\mathrm{d}p_T \,\mathrm{d}y} \left[1 + 2 \,\mathbf{v_1} \cos\left(\varphi - \Phi_R\right) + 2 \,\mathbf{v_2} \cos 2(\varphi - \Phi_R) + \cdots\right]$$

More particles along the impact parameter ($\varphi - \Phi_R = 0 \text{ or } 180^\circ$) than perpendicular to it if "elliptic flow" $v_2 \equiv \langle \cos 2(\varphi - \Phi_R) \rangle > 0$. average over particles

Jour fixe, Bielefeld, July 6, 2007

Universität Bielefeld

use "limiting fragmentation" again

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 13/29 Universität Bielefeld

Universität Bielefeld

Naive predictions: v_2 increases linearly with $\ln \sqrt{s_{NN}}$; v_2 / ϵ (eccentricity) increases linearly with $\frac{1}{S} \frac{dN^{ch}}{du}$

• Transport model I (Molnár): $v_2(p_T)$ increases from RHIC to LHC

 $v_2^{LHC,5500}(p_T) \approx v_2^{RHIC,200}(p_T \cdot k)$ $k = \frac{Q_s^{RHIC}}{Q_s^{LHC}} \approx 1.5$

• Transport model II (Ko): $v_2(p_T)$ increases for π^{\pm} , decreases for p

- $\$ Transport model III (Ollitrault): v_2 / ϵ increases; still 12–20% the hydro limit in central Pb–Pb @ LHC
- Hydro I (Bluhm): $v_2(p_T)$ decreases
- ${\bf a}$ Hydro II (Eskola, Niemi, Ruuskanen): $v_2(p_T)$ increases for pions, decreases for protons
- Hydro III (Heinz): $v_2(p_T)$ decreases for pions; yet the average v_2 increases, by at most 20% (less then $\ln \sqrt{s_{_{NN}}}$ -linear rise)

Eskola, Niemi, Ruuskanen

Heavy ion collisions at the LHC

The next, much expected (due to the increased available phase space) measurements will be that of

spectra at high transverse momentum

(remember, however, that we shall miss a proton-proton reference at the same energy $\sqrt{s_{\scriptscriptstyle NN}}$ = 5.5 TeV)

Conveniently characterized by the "nuclear modification factor"

$$R_{AB}^{h} \equiv \frac{\mathrm{d}N^{AB \to h}}{\mathrm{d}\mathbf{p}_{T}\mathrm{d}y} \left(\left\langle N_{\mathrm{coll}}^{AB} \right\rangle \frac{\mathrm{d}N^{pp \to h}}{\mathrm{d}\mathbf{p}_{T}\,\mathrm{d}y} \right)$$

average number of inelastic nucleon-nucleon collisions

Conveniently characterized by the "nuclear modification factor"

Conveniently characterized by the "nuclear modification factor"

The picture: while traversing the hot & dense medium, a fast parton loses energy (through collisions & radiation): "jet quenching"

Universität Bielefeld

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 21/29 Universität Bielefeld

Gyulassy, Wicks et al.

N.B. & Wiedemann 2007

Heavy ion collisions at the LHC

Eventually, after a few years' data taking, we shall see results on

charmonium & bottomonium

Charmonium & bottomonium

Should we believe Agnes and Péter?

Mócsy, Petreczky

N.Borghini – 25/29

Universität Bielefeld

Charmonium & bottomonium

Shall we have suppression of the J/ψ ?

Cappella, Ferreiro

Charmonium & bottomonium

Jour fixe, Bielefeld, July 6, 2007

N.Borghini – 27/29 University

Universität Bielefeld

Heavy ion collisions at the LHC

Sorry for the omitted topics...

• "femtoscopy": various predictions of the "HBT radius parameters", within transport (Ko), hydro (Heinz), and mixed (Bass, Sinyukov) models

 fluctuations: of baryon number & strangeness (Karsch), of charge density (Redlich), or of abundance ratios (Torrieri)

• jets: beyond the leading particle, away from midrapidity, reponse of the traversed medium... see session 6!

• electromagnetic/-weak probes: photons (Arleo, d'Enterria; Fries; Rezaeian; Sinha), dileptons (Fries; Sinha; van Hees); no Z^0 talk

• "exotica": black holes (Sarcevic; Stöcker), pentaquarks (Lee)

predictions for p-Pb collisions (Iancu, Jalilian-Marian, Kopeliovich, Kozlov, Tuchin, Wessels)

The end

Many thanks... to Urs Wiedemann (for our lasting correlation)

to Néstor Armesto, Sangyong Jeon, & Urs (again) for the fun we had

and to the many theorists / phenomenologists / experimentalists who dared make predictions

N.Borghini – 29/29

Universität Bielefeld

and to you, for your patience!