COLLECTIVE FLOW ANALYSIS FROM MULTIPARTICLE CORRELATIONS

- N. BORGHINI P. M. DINH J.-Y. Ollitrault Saclay Saclay Toulouse
 - Collective flow: v_1, v_2

- Methods of flow analysis $\begin{cases} \blacklozenge & \text{two-particle method(s): any } v_n \\ \heartsuit & \text{four-, six-, eight-particle method: any } v_n \\ \heartsuit & \text{three-particle method: } v_1 \text{ only} \end{cases}$
- Application to experimental (NA49, STAR) data

N. BORGHINI

ANISOTROPIC FLOW

v_1 PHYSICS (ultrarelativistic energies)

Projectile protons "bounce" off target: Pions flow opposite from protons:

v_1 PHYSICS (ultrarelativistic energies)

"Antiflow":

Assume space-momentum correlation & incomplete baryon stopping

 \implies negative proton v_1 just above midrapidity (" v_1 wiggle")

R. J. M. Snellings et al., Phys. Rev. Lett., 2000

v_2 PHYSICS (ultrarelativistic energies)

Time evolution of the collision: XZ, t $v_2 > 0$ X v "In-plane" elliptic flow, $v_2 > 0$ J.-Y. Ollitrault, Phys. Rev. **D46** (1992) 229

v_2 PHYSICS (lower energies)

Time evolution of the collision:

METHODS OF FLOW ANALYSIS, part I

Flow = correlation with the impact parameter direction

$$\boldsymbol{v_n} = \langle \cos n(\phi - \Phi_R) \rangle = \left\langle e^{in(\phi - \Phi_R)} \right\rangle$$

 Φ_R reaction plane azimuth... unknown!

4

 \Rightarrow solution (?): extract v_n from 2-particle correlations

$$\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle = \left\langle e^{in(\phi_1 - \Phi_R)} e^{in(\Phi_R - \phi_2)} \right\rangle$$
$$\approx \left\langle e^{in(\phi_1 - \Phi_R)} \right\rangle \left\langle e^{in(\Phi_R - \phi_2)} \right\rangle = (v_n \{2\})^2$$

GANIL, GSI, AGS, SPS, RHIC...

Assumption: the correlation between two particles is due to the correlation of each one with the reaction plane

Problem: there exist other correlation sources.

Bergen, October 25th, 2002

TWO-PARTICLE **NONFLOW** CORRELATIONS a simple example

Central collision $\rightarrow \text{NO flow}, v_n = 0.$

Strong direct back-to-back correlations: particles emitted by pairs

$$\Rightarrow \langle \cos 2(\phi_1 - \phi_2) \rangle > 0.$$

The standard analysis measures $v_2\{2\} \equiv \sqrt{\langle \cos 2(\phi_1 - \phi_2) \rangle} \neq 0...$

Bergen, October 25th, 2002

N. BORGHINI

Many sources of nonflow correlations:

- \diamondsuit quantum correlations (HBT)
- \blacklozenge momentum conservation
- \blacklozenge resonance decays
- \diamondsuit strong and Coulomb interactions
- \diamondsuit (mini)jets, etc.
- Unwanted correlations of the same magnitude as the flow correlations!

$$\mathcal{O}\left(\frac{1}{N}\right) \sim (v_n)^2$$

Solution (?): compute & subtract the correlations

Problem: are all sources known?

N.B., P.M. Dinh, J.-Y. Ollitrault, Phys. Lett. **B477** (2000) 51, Phys. Rev. **C62** (2000) 034902

-0.01

-0.02

-0.03

Bergen, October 25th, 2002

NONFLOW CORRELATIONS (continued)

Influence of momentum conservation (NA49 π^+, π^- , 158A GeV, min. bias)

N.B., P.M. Dinh, J.-Y. Ollitrault, A.M. Poskanzer, S.A. Voloshin, Phys. Rev. C66 (2002) 014901

Bergen, October 25th, 2002

METHODS OF FLOW ANALYSIS, part II

Nonflow two-particle correlations are a nuisance... let us eliminate them! \Rightarrow cumulant of the four-particle correlation:

$$c_{n}\{4\} \equiv \left\langle e^{in(\phi_{1}+\phi_{2}-\phi_{3}-\phi_{4})} \right\rangle - \left\langle e^{in(\phi_{1}-\phi_{2})} \right\rangle \left\langle e^{in(\phi_{3}-\phi_{4})} \right\rangle - \left\langle e^{in(\phi_{1}-\phi_{4})} \right\rangle \left\langle e^{in(\phi_{3}-\phi_{2})} \right\rangle$$
$$= -(v_{n}\{4\})^{4} + O\left(\frac{1}{N^{3}}\right)$$

nonflow FOUR-particle correlations, negligible.

Increased sensitivity: analysis valid if $v_n \gg \frac{1}{N^{3/4}}$, better than $v_n \gg \frac{1}{N^{1/2}}$. <u>systematic</u> error $\delta(v_n \{4\}^4) \simeq \frac{1}{N^3}$

N.B., P.M. Dinh, J.-Y. Ollitrault, Phys. Rev. C63 (2001) 054906, C64 (2001) 054901

Bergen, October 25th, 2002

"CUMULANT" METHOD OF FLOW ANALYSIS (continued)

Why only 4 particles?

• Measured six-particle correlations \implies cumulant of the six-particle correlation:

$$c_n\{6\} = 4\left(v_n\{6\}\right)^6 + O\left(\frac{1}{N^5}\right)$$

• Measured eight-particle correlations \implies cumulant of the eight-particle correlation:

$$c_n\{8\} = -33 \left(v_n\{8\} \right)^8 + O\left(\frac{1}{N^7}\right)$$

Systematic error decreases!

$$\delta(v_n\{6\}^6) \simeq \frac{1}{N^5}, \qquad \delta(v_n\{8\}^8) \simeq \frac{1}{N^7} \cdots$$

Bergen, October 25th, 2002

"CUMULANT" METHOD OF FLOW ANALYSIS (continued)

Problem: the method is statistics-consuming, requires many multiplets:

$$\frac{\overline{v_n}}{v_n} \simeq \frac{1}{2\sqrt{N_{\text{evts}}}} \frac{(v_n \sqrt{N})^4}{(v_n \sqrt{N})^4},$$

 $\delta v_n\{4\}$ 1

statistical uncertainty depends on v_n

 \Rightarrow smaller v_n requires more statistics!

Higher order (6-, 8-particle) cumulants need even more statistics

Problem (at ultrarelativistic energies) for v_1 , not for v_2

 $(v_n\sqrt{N})^2$ with 2-particle m.

RESULTS FROM THE "CUMULANT" METHOD!

RESULTS FROM THE "CUMULANT" METHOD!

Au-Au collisions, $\sqrt{s_{NN}} = 200$ GeV, charged hadron v_2 vs. p_T :

STAR Collaboration, nucl-ex/0210027

METHODS OF FLOW ANALYSIS, part III: v_1 from THREE-PARTICLE CORRELATIONS

Idea: consider the $\underline{\text{mixed}}$ three-particle correlation:

$$\left\langle e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right\rangle = (v_1\{3\})^2 v_2 + \mathcal{O}\left(\frac{1}{N^2}\right)$$

nonflow $\underline{\mathbf{3}}$ -particle correlation

 v_2 measured in separate analysis \Rightarrow value of v_1

♥ Statistical uncertainty moderate:
$$\frac{\delta v_1 \{3\}}{v_1} \simeq \frac{1}{2\sqrt{N_{\text{evts}}}} \frac{1}{(v_1\sqrt{N})^2 (v_2\sqrt{N})}$$

especially if v_2 is "large" (SPS, RHIC)

 \heartsuit Error due to nonflow correlations negligible

N.B., P.M. Dinh, J.-Y. Ollitrault, Phys. Rev. C66 (2001) 014905

Bergen, October 25th, 2002

v_1 from THREE-PARTICLE CORRELATIONS

Integrated v_2 and v_1 vs. centrality, 158A GeV Pb-Pb

1. Pick a reference (integrated) v_2

2.) and deduce the integrated v_1 :

Bergen, October 25th, 2002

v_1 from THREE-PARTICLE CORRELATIONS

(3.) Reference v_2 + integrated v_1 {3} yield differential v_1 {3}: $v_1(p_t)$ and $v_1(y)$ for charged pions, semicentral 158A GeV Pb-Pb

v_1 from THREE-PARTICLE CORRELATIONS

 $v_1(y)$ of protons, semicentral 158A GeV Pb-Pb

Bergen, October 25th, 2002

TWO-PARTICLE NONFLOW EFFECTS

Bergen, October 25th, 2002

N. BORGHINI

COLLECTIVE FLOW ANALYSIS FROM MULTIPARTICLE CORRELATIONS

 \heartsuit Transverse flow interesting subject!

 \heartsuit Connection with other topics (HBT) \Rightarrow complementary picture

cf. E895, STAR

 \heartsuit Reliable methods of analysis are available!

 \heartsuit Experimental results are available too!

(E895), NA49, STAR

Bergen, October 25th, 2002

PRACTICAL ANALYSIS: GENERATING FUNCTIONS

1. For each event, compute the generating functions

$$G_{n}(z) = \prod_{k=1}^{M} \left(1 + \frac{z^{*}e^{in\phi_{k}} + ze^{-in\phi_{k}}}{M} \right),$$

and

$$\mathcal{G}(z_1, z_2) = \prod_{k=1}^{M} \left(1 + \frac{z_1^* e^{i\phi_k} + z_1 e^{-i\phi_k} + z_2^* e^{2i\phi_k} + z_2 e^{-2i\phi_k}}{M} \right).$$

Why?

2. Then average them over events:

$$\langle G_n(z)\rangle = 1 + \dots + \frac{|z|^2}{M^2} \left\langle \sum_{j \neq k} e^{in(\phi_j - \phi_k)} \right\rangle + \dots + \frac{|z|^4}{4M^4} \left\langle \sum_{j,k,l,m} e^{in(\phi_j + \phi_k - \phi_l - \phi_m)} \right\rangle + \dots$$

and

$$\langle \mathcal{G}(z_1, z_2) \rangle = \dots + \frac{z_1^{*2} z_2}{M^3} \left\langle \sum_{j,k,l} e^{i(\phi_j + \phi_k - 2\phi_l)} \right\rangle + \dots$$

Bergen, October 25th, 2002

3. Deduce the cumulants, taking

$$M\left(\langle G_n(z) \rangle^{1/M} - 1\right) = |z|^2 \left<\!\!\left< e^{i(\phi_1 - \phi_2)} \right>\!\!\right> + \dots + \frac{|z|^4}{4} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \right>\!\!\right> + \dotsb$$

and

$$M\left(\langle \mathcal{G}(z_1, z_2) \rangle^{1/M} - 1\right) = \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2 - 2\phi_3)} \right>\!\right> + \dots + \frac{z_1^{*2} z_2}{2} \left<\!\!\left< e^{i(\phi_1 + \phi_2$$

The generating function yields ALL CUMULANTS at once!! \checkmark

4. Extract the flow:

• for v_n , *n* arbitrary (especially for v_2) use $M(\langle G_n(z) \rangle^{1/M} - 1) = \ln I_0(2 v_n |z|)$, and/or perform the appropriate acceptance corrections

• with the above-determined reference value of v_2 , extract $v_1\{3\}$, using

 $\left\langle\!\left\langle e^{i(\phi_1+\phi_2-2\phi_3)}\right\rangle\!\right\rangle = \begin{cases} (v_1\{3\})^2 v_2 & (\text{good acceptance}) \\ & \text{depends on the detector} \\ & \alpha & (v_1\{3\})^2 v_2 & (\text{PHENIX uneven acceptance}) \end{cases}$

5. Post your paper on **nucl-ex** and collect citations.