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A well-defined mathematical problem…
Consider a finite-size-   ring polymer (in a   -dimensional space):N D

“closed”:

M

+ + + = 0· · ·p2 pNp1

Take    monomers among the    ones.
What is the multiple correlation induced between these monomers by 
the overall constraint                             ?

N
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A well-defined mathematical problem…
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Consider    particles constrained by (total) momentum conservation:
for instance, in the center-of-mass frame of the colliding nuclei, the 
particles emitted in a Au-Au collision satisfy                            . 

N

N

What is the correlation between    arbitrary particles induced by the 
momentum-conservation constraint?

M



An old idea...
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An old idea...
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 A few useful definitions and properties

 probability distributions, cumulants, generating functions...

 Multiparticle correlation induced by total momentum conservation

 a general, model-independent calculation

Eur. Phys. J. C 30 (2003) 381

 Specific study of two- and three-particle correlations due to total 
momentum conservation

Phys. Rev. C 75 (2007) 021904(R)
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Total momentum conservation 
and statistical studies of jets
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Multiparticle correlations & cumulants
    -particle probability distribution                  : 

probability that particles {  ,   ,    ,    } have momenta    ,     ,     , 
irrespective of the momenta of the         other particles.

    normalized to unity:

A useful mathematical tool:

Generating function of the probability distribution:

             auxiliary (complex) variables

Independent particles: 

G(x1, . . . , xN ) = 1 + x1 f(p1) + x2 f(p2) + . . . + x1x2 f(p1,p2) + . . .

f(pi1 , . . .,piM )

f({pik
}) = O(1), ∀M

M

pi1 pi2 . . . piM
i1 i2 . . . iM

N−M

x1, . . . , xN

f(p1,p2, . . .,pN ) = f(p1) f(p2) · · · f(pN )



    -particle cumulant of the probability distribution                   :
connected part of the probability distribution, responsible for the 
“correlations” (= deviations from statistical independence)

(note:                …)

At the three-particle level:

M fc(pi1 , . . .,piM )

f(p1,p2) = fc(p1) fc(p2) + fc(p1,p2)
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Multiparticle correlations & cumulants

=                +
f(p) = fc(p)

Generating function of the cumulants:

=            +            +            +           +

lnG(x1, . . . , xN ) = x1 fc(p1) + x2 fc(p2) + . . . + x1x2 fc(p1,p2) + . . .
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Multiparticle correlations & cumulants
How do cumulants scale with the total multiplicity   ?

For a system made of independent sub-systems (or with short-range 
correlations only), the probability distributions add up:

N

f({pj}) =
∑

A

NA

N
fA({pj}) G({xj}) =

∏

A

gA

({
NA xj

N

})
i.e.

lnG({xj}) =
∑

A

ln gA

({
NA xj

N

})
At the cumulant level, 

fc(pi1 , . . .,piM ) = O
(

1
NM−1

)Expand, search for the coefficient of xi1 . . . xiM

What about the case of particles whose momenta are constrained by 
total momentum conservation?
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Total momentum conservation 
and    -particle distributionM

In the presence of the constraint from total momentum conservation, 
the    -particle distribution reads:M

which one then inserts in the generating function...

f(p1, . . .,pM ) ≡




M∏

j=1

F (pj)




∫

δD(p1 + · · · + pN )
N∏

j=M+1

[
F (pj) dDpj

]

∫
δD(p1 + · · · + pN )

N∏

j=1

[
F (pj) dDpj

]



                              
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Total momentum conservation 
and    -particle distributionM

In the presence of the constraint from total momentum conservation, 
the    -particle distribution reads:M

which one then inserts in the generating function...

single-particle distribution
in the absence of constraint

-independent denominatorM ≡ 1/CD

∫
dDk

(2π)D

N∏

j=1

eik·pj

f(p1, . . .,pM ) ≡




M∏

j=1

F (pj)




∫

δD(p1 + · · · + pN )
N∏

j=M+1

[
F (pj) dDpj

]

∫
δD(p1 + · · · + pN )

N∏

j=1

[
F (pj) dDpj

]



G(x1, . . . , xN ) ∝ eNF(k0)



1 +
∑

q>l

xl

Nq




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Generating function

G(x1, . . . , xN ) = CD

∫
dDk

(2π)D
〈eik·p〉N exp




N∑

j=1

xjF (pj)
eik·pj

〈eik·p〉





= CD

∫
dDk

(2π)D
exp



N



ln〈eik·p〉 +
N∑

j=1

x̄j

N

eik·pj

〈eik·p〉









I shall show (using a saddle-point method) that 

Introducing the notation                               , one finds: 〈g(p)〉 ≡
∫

g(p)F (p) dDp



G(x̄1, . . . , x̄N ) ∝ eNF(k0)



1 +
∑

q>l

x̄l

Nq




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Generating function

G(x1, . . . , xN ) = CD

∫
dDk

(2π)D
〈eik·p〉N exp




N∑

j=1

xjF (pj)
eik·pj

〈eik·p〉





= CD

∫
dDk

(2π)D
exp



N



ln〈eik·p〉 +
N∑

j=1

x̄j

N

eik·pj

〈eik·p〉









  

the unmeasurable     is absorbedF

                      

F(k)
x̄

N
only depends on

I shall show (using a saddle-point method) that 

Introducing the notation                               , one finds: 〈g(p)〉 ≡
∫

g(p)F (p) dDp
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Saddle-point method
A Taylor expansion around the saddle-point     yieldsk0

G(x̄1, . . . , x̄N ) = CD eNF(k0)
(∑ )

︸ ︷︷ ︸
Gaussian integrals

1
ND/2

∫
dDκ

(2π)D
e−F

′′(k0) κ2/2

︸ ︷︷ ︸
exp




∑

m≥3

F (m)(k0)
m!

κm

Nm/2−1





1
[2πF ′′(k0)]D/2

x̄

N
  only depend on ≤ 1/

√
N

G(x̄1, . . . , x̄N ) =
CD eNF(k0)

[2πNF ′′(k0)]D/2



1 +
∑

q>l

x̄l

Nq



Therefore



N.Borghini — 11/24RHIC & AGS Annual Users’ Meeting, BNL, June 18, 2007

Cumulants

lnG(x̄1, . . . , x̄N ) = ln CD + NF(k0) + ln
(

x̄l

Nq≥l

)The generating function of cumulants thus reads
                                                       function of

x̄independent of

   x̄

N
function of
x̄

N

x̄

N
only depends on                    function of F k0

F ′(k0) = 0(solution of             )

Hence the (scaled ) cumulants:

f̄c(pi1 , . . .,piM ) = x̄i1 · · · x̄iM

NF(k0)
+O

(
1

NM

)
= O

(
1

NM−1

)
coef. of
     in

The cumulants arising from total momentum conservation follow the 
same scaling behaviour as those from short-range correlations!

nice for “cumulant” or “Lee-Yang zeroes” methods of anisotropic-flow analysis

*

* f̄c(pi1 , . . .,piM ) ≡ fc(pi1 , . . .,piM )/[f(pi1) · · · f(piM )]






N∑

j=1

x̄j

N

eik0·pj

〈eik0·p〉 − 1



〈p eik0·p〉 =
N∑

j=1

x̄j

N
pjeik0·pj
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Computing the first cumulants
 The saddle-point is given by              , i.e.F ′(k0) = 0

lnG(x̄1, . . . , x̄N ) = NF(k0) The cumulants are given by 

f̄c(p1,p2) = −D p1 · p2

N〈p2〉which gives                             , of order           as expected O
(

1
N

)

ik0 = − D

〈p2〉

N∑

j=1

x̄j

N
pj

F(k0) =
N∑

j=1

x̄j

N
− D

2〈p2〉




N∑

j=1

x̄j

N
pj




2

To lowest order ,                           , hence  *

assuming       isotropic, so that          andF (p) 〈p〉 = 0* 〈(k0 · p)2〉 = k0
2〈p2〉/D



lnG(x̄1, . . . , x̄N ) =
N∑

j=1

x̄j −
D

2N〈p2〉
∑

j,k

x̄j x̄k(pj · pk)

− D

2N2〈p2〉
∑

j,k,l

x̄j x̄kx̄l

[
pj · pl −

D

〈p2〉 (pj · pk)(pk · pl)
]

ik0 = −
[
1D −

(
X01D − D

〈p2〉X2

)]−1 D

〈p2〉X1
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Computing the first cumulants
x̄

N
Going to the next order in    : 

X0 ≡
N∑

j=1

x̄j

N
X1 ≡

N∑

j=1

x̄j

N
pj X2 ≡

N∑

j=1

x̄j

N
pj ⊗ pjwith               ,                    ,

unit         matrixD ×D

F(k0) = X0 −
D

2〈p2〉 (X1)2 − D

2〈p2〉X1 ·
(

X01D − D

〈p2〉X2

)
· X1

2-particle cumulants

3-particle cumulants:            !O(1/N2)



f̄c(p1,p2) = −D p1 · p2

N〈p2〉

f̄c(p1,p2,p3) = − D

N2〈p2〉 (p1 · p2 + p1 · p3 + p2 · p3)

+
D2

N2〈p2〉2 [(p1 · p2)(p1 · p3) + (p1 · p2)(p2 · p3)

+(p1 · p3)(p2 · p3)]

N ! 1
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Total momentum conservation 
and    -particle cumulantsM

Using a saddle-point method (which implies        ), I have computed in 
a model-independent way the multiparticle cumulants arising from the 
constraint + + + = 0· · ·p2 pNp1

Moreover, the    -particle cumulant arising from the conservation of 
total momentum scales with multiplicity as           , as those from 
short-range correlations!

1/NM−1

M

will be taken =2 in what follows
(transverse momentum conservation)



px

py
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Two-particle correlation due to total 
transverse momentum conservation

f̄c(p1,p2) = −2p1 · p2

N〈p2〉We have seen that                            , which means that the 
two-particle probability distribution reads

f(p1,p2) = f(p1)f(p2)
(

1 − 2 p1p2 cos(ϕ2 − ϕ1)
N〈p2〉

)

Thus, if there is a first particle with transverse momentum    , then 
the probability to find a second particle with transverse momentum  
is NOT isotropic, but larger “away” (in azimuth) from    .p1

p2

p1



px

py
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Two-particle correlation due to total 
transverse momentum conservation

f̄c(p1,p2) = −2p1 · p2

N〈p2〉We have seen that                            , which means that the 
two-particle probability distribution reads

f(p1,p2) = f(p1)f(p2)
(

1 − 2 p1p2 cos(ϕ2 − ϕ1)
N〈p2〉

)

Thus, if there is a first particle with transverse momentum    , then 
the probability to find a second particle with transverse momentum  
is NOT isotropic, but larger “away” (in azimuth) from    .p1

p2

p1

p1
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py
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Two-particle correlation due to total 
transverse momentum conservation

f̄c(p1,p2) = −2p1 · p2

N〈p2〉We have seen that                            , which means that the 
two-particle probability distribution reads

f(p1,p2) = f(p1)f(p2)
(

1 − 2 p1p2 cos(ϕ2 − ϕ1)
N〈p2〉

)

Thus, if there is a first particle with transverse momentum    , then 
the probability to find a second particle with transverse momentum  
is NOT isotropic, but larger “away” (in azimuth) from    .p1

p2

p1

One cannot speak of “a jet + an (uncorrelated) background event”!

everything recoils

p1
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Two-particle correlation due to total 
transverse momentum conservation

The conservation of total transverse momentum does correlate all 
particles in the event together!

The correlation is back-to-back, & larger 
between particles with larger momenta

    should not be forgotten in jet studies…

Its meaning?
That the conditional probability for an “associated” particle to have a 
momentum     when there is a “trigger” particle with momentum    is 
not the same as the probability to have a particle with momentum  
irrespective of the momenta of the other particles.
The “background” to the jet is modulated by its presence (need to 
balance the momentum).

p2

p2 p1

f̄c(p1,p2) = −2p1 · p2

N〈p2〉
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Total momentum conservation 
and statistical studies of jets

The “background” to the jet is modulated by its presence (need to 
balance the momentum).
This is a model-independent statement! I do not assume any specific 
micro-/macroscopic picture of the correlation between the jet and 
the other particles.

    issue for methods that decompose an event into jet+background, 
as they might not be easy to disentangle from each other.

Safer approach (cf. Claude Pruneau!): 
 measure the cumulants on the one hand;
 compute their values due to various sources of correlation on the 

other hand.



f̄c(p1,p2,p3) = − 2
N2〈p2〉 (· · · ) +

22

N2〈p2〉2 (· · · )
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Three-particle correlation due to total 
transverse momentum conservation

          

repulsive
term

          

attractive
term

The attractive term dominates over the repulsive one (not intuitive!) 
when all three particles have transverse momenta larger than the 
rms transverse momentum: relevant case for high-    studies!pT

Let us investigate the behavior of this cumulant!
(for simplicity, in the case                                     )

I shall use the relative angles                     and        

ptrigger ≡ p1 > p2 = p3 ≡ passoc.

∆ϕ12 ≡ ϕ1 − ϕ2 ∆ϕ13 ≡ ϕ1 − ϕ3
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Three-particle correlation due to total 
transverse momentum conservation

all particles in the event: conservative estimate
(if transverse momentum was actually balanced 
between a smaller number of particles, the 
correlation would be larger)

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45

PHENIX, PRL 97 (2006) 052301:
2.5 GeV <    < 4 GeV & 1 GeV <   ,    < 2.5 GeV;
Cl. Pruneau, nucl-ex/0703010: 
3 GeV <    < 4 GeV & 1 GeV <   ,    < 2 GeV;

p1 p2 p3

p1 p2 p3



Note the 2 humps around 180°

same size as correlations due to flow
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Three-particle correlation due to total 
transverse momentum conservation

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45
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Three-particle correlation due to total 
transverse momentum conservation

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45

The structure is non-trivial!
A process involving three bodies 
only cannot accommodate such 
values of the momenta!

p1 + p2 + p3 != 0
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Three-particle correlation due to total 
transverse momentum conservation

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45

∆ϕ12 = ∆ϕ13 ∆ϕ12 = π −∆ϕ13

Two humps around 180°(Local) maximum at 180°
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Three-particle correlation due to total 
transverse momentum conservation

The 2 humps around 180° have merged into one

correlations are larger

RHIC-inspired values:    = 8000 particles,                  GeV 
                                   GeV                       GeV

N 〈p2〉1/2 = 0.45
p1 = 6 ≥ 5(p2 = p3) = 1.2
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Three-particle correlation due to total 
transverse momentum conservation

RHIC-inspired values:    = 8000 particles,                  GeV 
                                   GeV                       GeV

N 〈p2〉1/2 = 0.45
p1 = 6 ≥ 5(p2 = p3) = 1.2

∆ϕ12 = ∆ϕ13 ∆ϕ12 = π −∆ϕ13

One big hump at 180°(Local) maximum at 180°
The structure away from the “trigger” depends on the cuts
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Total momentum conservation 
and statistical studies of jets

Total momentum conservation induces correlations between the 
particles emitted in a collision.

These correlations can be computed… and their value can be 
estimated if one “knows” the total emitted multiplicity    and the 
mean square momentum      .

can be treated as parameters

N
〈p2〉

Do not underestimate its possible role!



Extra slide



cumulant:
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Three-particle distribution vs. 
three-particle cumulant

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45



cumulant:distribution:
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Three-particle distribution vs. 
three-particle cumulant

RHIC-inspired values:    = 8000 particles,                  GeV 
                                     GeV,                  GeVp1 = 3.2 p2 = p3 = 1.2

N 〈p2〉1/2 = 0.45




