Non-trivial correlation patterns from trivial phenomena ... and how to avoid them

Nicolas BORGHINI

Universität Bielefeld

Non-trivial correlation patterns from trivial phenomena

Cooking up a fancy meal with plain ingredients... and a questionable recipe.

Improving on the recipe...

... and on the presentation of the meal.

First ingredient:

total momentum conservation

In the center-of-mass frame of the colliding nuclei, the N particles emitted in a Au-Au collision satisfy $\mathbf{p}_1 + \mathbf{p}_2 + \cdots + \mathbf{p}_N = \mathbf{0}$.

An old idea...

PHYSICAL REVIEW D

VOLUME 6, NUMBER 11

1 DECEMBER 1972

Azimuthal Correlations of High-Energy Collision Products

Margaret C. Foster, Daniel Z. Freedman, and S. Nussinov*

Department of Physics and Institute for Theoretical Physics,

State University of New York at Stony Brook, † Stony Brook, New York 11790

and

J. Hanlon and R. S. Panvini

Vanderbilt University, Nashville, Tennessee ‡ 37203

(Received 24 July 1972)

Experimental distributions of azimuthal angles between particles produced in pp and pd collisions at 28 GeV/c and K^-p collisions at 9 GeV/c are presented and studied.

The study of two-particle correlations is a natural step beyond the investigation of single-particle distributions. Such a study could be very useful in clarifying our understanding of multiple-particle production in high-energy collisions.

In this paper we concentrate on azimuthal correlations, that is, distributions $d\sigma/d\phi_{ij}$ where ϕ_{ij} is the angle between transverse momenta \vec{k}_i and \vec{k}_j of two final-state particles.

The main goal of our study is to identify the correlations which arise simply from momentum conservation and the experimentally observed damping of transverse momenta.

An old idea...

PHYSICAL REVIEW D

VOLUME 6, NUMBER 11

1 DECEMBER 1972

Azimuthal Correlations of High-Energy Collision Products

II. MOMENTUM-CONSERVATION CONSTRAINT

We consider the azimuthal distribution $d\sigma^n/d\phi$ in a general reaction with n particles in the final state. Transverse-momentum conservation imposes some constraints on this distribution. Denoting the transverse momentum of the ith particle by \vec{k}_i , we see that transverse momentum conservation gives the condition

$$\sum_{i} k_i^2 + \sum_{i \neq j} \vec{k}_i \cdot \vec{k}_j = 0.$$

Upon averaging over all particles, we find $n\langle k_i^2 \rangle + n(n-1)\langle \vec{k}_i \cdot \vec{k}_j \rangle = 0$, which suggests that $\langle \cos \phi \rangle \approx -1/(n-1)$ and that a distribution $d\sigma^n/d\phi$ might be expected to peak at $\phi = \pi$, the peak becoming less pronounced as n increases.

$$\frac{d\sigma^n}{d\phi} = \sum_{i \neq j} \frac{d\sigma^n}{d\phi_{ij}}$$

Multiparticle distributions & cumulants

lacktrianglet M-particle probability distribution $f(\mathbf{p}_{i_1},\ldots,\mathbf{p}_{i_M})$: probability that particles $\{i_1,i_2,\ldots,i_M\}$ have momenta \mathbf{p}_{i_1} , \mathbf{p}_{i_2} , \ldots , \mathbf{p}_{i_M} irrespective of the momenta of the N-M other particles.

is normalized to unity: $f(\{\mathbf{p}_{i_k}\}) = \mathcal{O}(1), \ \forall M$

Independent particles: $f(\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_N) = f(\mathbf{p}_1) f(\mathbf{p}_2) \cdots f(\mathbf{p}_N)$

Multiparticle distributions & cumulants

lacktriangleta M-particle cumulant of the probability distribution $f_c(\mathbf{p}_{i_1},\ldots,\mathbf{p}_{i_M})$: connected part of the probability distribution, responsible for the "correlations" (= deviations from statistical independence)

$$f(\mathbf{p}_1, \mathbf{p}_2) = f_c(\mathbf{p}_1) f_c(\mathbf{p}_2) + f_c(\mathbf{p}_1, \mathbf{p}_2)$$

$$\bullet \quad \bullet \quad \bullet \quad \bullet$$

(note: $f(\mathbf{p}) = f_c(\mathbf{p})...$)

At the three-particle level:

In the following, I shall also use "reduced cumulants"

$$ar{f}_c(\mathbf{p}_1,...,\mathbf{p}_M) \equiv rac{f_c(\mathbf{p}_1,...,\mathbf{p}_M)}{f(\mathbf{p}_1)\cdots f(\mathbf{p}_M)}$$

Total momentum conservation and M-particle distribution

In the presence of the constraint from total momentum conservation, the M-particle probability distribution reads:

$$f(\mathbf{p}_1, ..., \mathbf{p}_M) \equiv rac{\displaystyle \left(\prod_{j=1}^M F(\mathbf{p}_j)
ight) \int \!\! \delta^D(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=M+1}^N igl[F(\mathbf{p}_j) \, \mathrm{d}^D \mathbf{p}_j igr]}{\displaystyle \int \!\! \delta^D(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=1}^N igl[F(\mathbf{p}_j) \, \mathrm{d}^D \mathbf{p}_j igr]}$$

... which can be computed in the large-N limit, together with the corresponding cumulants.

N.B., Eur. Phys. J. C 30 (2003) 381

Total momentum conservation and M-particle distribution

In the presence of the constraint from total momentum conservation, the M-particle probability distribution reads:

$$f(\mathbf{p}_1, ..., \mathbf{p}_M) \equiv rac{\displaystyle \left(\prod_{j=1}^M F(\mathbf{p}_j)
ight) \int \delta^D\!(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=M+1}^N \left[F(\mathbf{p}_j) \operatorname{d}^D \mathbf{p}_j
ight]}{\displaystyle \int \!\! \delta^D\!(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=1}^N \left[F(\mathbf{p}_j) \operatorname{d}^D \mathbf{p}_j
ight]}$$

... which can be computed in the large-N limit, together with the corresponding cumulants.

N.B., Eur. Phys. J. C 30 (2003) 381

Total momentum conservation and M-particle distribution

In the presence of the constraint from total momentum conservation, the M-particle probability distribution reads: single-particle distribution dimension in the absence of constraint of space $f(\mathbf{p}_1, \ldots, \mathbf{p}_M) \equiv \frac{\left(\prod_{j=1}^M F(\mathbf{p}_j)\right) \int \delta^D(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=M+1}^N \left[F(\mathbf{p}_j) \operatorname{d}^D \mathbf{p}_j\right]}{\int \delta^D(\mathbf{p}_1 + \cdots + \mathbf{p}_N) \prod_{j=1}^N \left[F(\mathbf{p}_j) \operatorname{d}^D \mathbf{p}_j\right]}$ *M*-independent denominator M-independent denominator

... which can be computed in the large-N limit, together with the corresponding cumulants.

N.B., Eur. Phys. J. C 30 (2003) 381

First cumulants

$$egin{aligned} ar{f}_c(\mathbf{p}_1,\mathbf{p}_2) &= -rac{D\,\mathbf{p}_1\cdot\mathbf{p}_2}{N\langle\mathbf{p}^2
angle} & ext{Back-to-back correlation, larger for} \ \mathbf{particles} & ext{ with larger momenta} \end{aligned}$$
 $ar{f}_c(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3) &= -rac{D}{N^2\langle\mathbf{p}^2
angle}(\mathbf{p}_1\cdot\mathbf{p}_2+\mathbf{p}_1\cdot\mathbf{p}_3+\mathbf{p}_2\cdot\mathbf{p}_3) \ + rac{D^2}{N^2\langle\mathbf{p}^2
angle^2}\left[(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_3)+(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_2\cdot\mathbf{p}_3) \ + (\mathbf{p}_1\cdot\mathbf{p}_3)(\mathbf{p}_2\cdot\mathbf{p}_3)
ight] \end{aligned}$

First cumulants

$$egin{aligned} ar{f}_c(\mathbf{p}_1,\mathbf{p}_2) &= -rac{D\,\mathbf{p}_1\cdot\mathbf{p}_2}{N\langle\mathbf{p}^2
angle} & ext{Back-to-back correlation, larger for} \ \mathbf{particles} & ext{ with larger momenta} \end{aligned}$$
 $ar{f}_c(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3) &= -rac{D}{N^2\langle\mathbf{p}^2
angle}(\mathbf{p}_1\cdot\mathbf{p}_2+\mathbf{p}_1\cdot\mathbf{p}_3+\mathbf{p}_2\cdot\mathbf{p}_3) \ + rac{D^2}{N^2\langle\mathbf{p}^2
angle^2}\left[(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_3)+(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_2\cdot\mathbf{p}_3) \ + (\mathbf{p}_1\cdot\mathbf{p}_3)(\mathbf{p}_2\cdot\mathbf{p}_3)
ight] \end{aligned}$

Want to relax the "isotropic emission" assumption? (take D = 3)

$$\bar{f}_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{p_{1,x}p_{2,x}}{N\langle p_x^2 \rangle} - \frac{p_{1,y}p_{2,y}}{N\langle p_y^2 \rangle} - \frac{p_{1,z}p_{2,z}}{N\langle p_z^2 \rangle}$$

x,y,z principal axes of the $\langle \mathbf{p} \otimes \mathbf{p} \rangle$ tensor

N.B. 2003; Z.Chajęcki & M.A.Lisa, Braz. J. Phys **37** (2007) 1057

First cumulants

$$\begin{array}{ll} \bar{f}_c(\mathbf{p}_1,\mathbf{p}_2) &=& -\frac{D\,\mathbf{p}_1\cdot\mathbf{p}_2}{N\langle\mathbf{p}^2\rangle} & \text{Back-to-back correlation, larger for} \\ \bar{f}_c(\mathbf{p}_1,\mathbf{p}_2,\mathbf{p}_3) &=& -\frac{D}{N^2\langle\mathbf{p}^2\rangle}(\mathbf{p}_1\cdot\mathbf{p}_2+\mathbf{p}_1\cdot\mathbf{p}_3+\mathbf{p}_2\cdot\mathbf{p}_3) \\ && + \frac{D^2}{N^2\langle\mathbf{p}^2\rangle^2}\left[(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_1\cdot\mathbf{p}_3)+(\mathbf{p}_1\cdot\mathbf{p}_2)(\mathbf{p}_2\cdot\mathbf{p}_3) \\ && + (\mathbf{p}_1\cdot\mathbf{p}_3)(\mathbf{p}_2\cdot\mathbf{p}_3)\right] \end{array}$$

Want to relax the "isotropic emission" assumption? (take D = 3)

$$ar{f}_c(\mathbf{p}_1,\mathbf{p}_2) = -rac{p_{1,x}p_{2,x}}{N\langle p_x^2
angle} - rac{p_{1,y}p_{2,y}}{N\langle p_y^2
angle} \left(-rac{p_{1,z}p_{2,z}}{N\langle p_z^2
angle}
ight) \quad egin{array}{c} \langle p_z^2
angle \gg \langle p_{x,y}^2
angle \\ + \langle p_z^2
angle \gg \langle p_{x,y}^2
angle \end{pmatrix}$$
 studies at

x,y,z principal axes of the $\langle \mathbf{p} \otimes \mathbf{p} \rangle$ tensor

N.B. 2003; Z.Chajęcki & M.A.Lisa, Braz. J. Phys **37** (2007) 1057

midrapidity

Second ingredient:

anisotropic flow

In a non-central ($\vec{b} \neq \vec{0}$) Au-Au collision the transverse emission of particles is anisotropic: $\langle p_x^2 \rangle \neq \langle p_y^2 \rangle$.

In a non-central $(\vec{b} \neq \vec{0})$ Au-Au collision...

The particle azimuthal distribution is a 2π -periodic function:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto f(\varphi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} \mathbf{v_n} \mathrm{e}^{\mathrm{i}n\varphi} = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n} \cos n\varphi \right]$$

where $v_n = \langle \cos(n\varphi) \rangle$ is real (in the absence of parity violation).

This is the generic case! Central collisions exist only in the minds of theorists.

Let
$$ar{v}_2 \equiv rac{\left\langle p_x^2 - p_y^2
ight
angle}{\left\langle p_x^2 + p_y^2
ight
angle}.$$

$$ar{v_2}
eq v_2 = \left\langle rac{p_x^2 - p_y^2}{p_x^2 + p_y^2}
ight
angle$$

Let
$$ar{v}_2 \equiv rac{\left\langle p_x^2 - p_y^2
ight
angle}{\left\langle p_x^2 + p_y^2
ight
angle}.$$

$$ar{v_2}
eq v_2 = \left\langle rac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right
angle$$

total momentum conservation

$$\bar{f}_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{p_{1,x}p_{2,x}}{N\langle p_x^2 \rangle} - \frac{p_{1,y}p_{2,y}}{N\langle p_y^2 \rangle}
= -\frac{2p_{T_1}p_{T_2}}{N\langle p_T^2 \rangle (1 - \bar{v}_2^2)} \left[\cos(\varphi_2 - \varphi_1) - \bar{v}_2 \cos(\varphi_1 + \varphi_2) \right]$$

Let
$$ar{v}_2 \equiv rac{\left\langle p_x^2 - p_y^2
ight
angle}{\left\langle p_x^2 + p_y^2
ight
angle}.$$

$$ar{v_2}
eq v_2 = \left\langle rac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right
angle$$

+

total momentum conservation

$$\bar{f}_c(\mathbf{p}_1, \mathbf{p}_2) = -\frac{p_{1,x}p_{2,x}}{N\langle p_x^2 \rangle} - \frac{p_{1,y}p_{2,y}}{N\langle p_y^2 \rangle}
= -\frac{2p_{T_1}p_{T_2}}{N\langle p_T^2 \rangle (1 - \bar{v}_2^2)} \left[\cos(\varphi_2 - \varphi_1) - \bar{v}_2 \cos(\varphi_1 + \varphi_2) \right]$$

two-particle probability distribution

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left[1 + \overline{f}_c(\mathbf{p}_1, \mathbf{p}_2) \right]$$

Of trigger and associated particles

Two-particle distribution ↔ two-particle probability distribution

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left[1 + \overline{f}_c(\mathbf{p}_1, \mathbf{p}_2) \right]$$

Choose a "trigger particle (1)" in an event.

Yield of associated particles (2) ↔ conditional probability distribution

$$f(\mathbf{p}_{T2} | \mathbf{p}_{T1}) = \frac{f(\mathbf{p}_{T1}, \mathbf{p}_{T2})}{f(\mathbf{p}_{T1})} \quad \left(\neq f(\mathbf{p}_{T2}) \right)$$

Of trigger and associated particles

Two-particle distribution \leftrightarrow two-particle probability distribution

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left[1 + \overline{f}_c(\mathbf{p}_1, \mathbf{p}_2) \right]$$

Choose a "trigger particle (1)" in an event.

Yield of associated particles (2) ↔ conditional probability distribution

$$f(\mathbf{p}_{T2} | \mathbf{p}_{T1}) = \frac{f(\mathbf{p}_{T1}, \mathbf{p}_{T2})}{f(\mathbf{p}_{T1})} \quad \left(\neq f(\mathbf{p}_{T2}) \right)$$

Here
$$f(\mathbf{p_{T2}}|\mathbf{p_{T1}}) = f(\mathbf{p_{T2}}) \left[1 - \frac{2p_{T1}p_{T2}}{N\langle p_{T}^2 \rangle} (\cos(\varphi_1 - \varphi_2) - \overline{v_2}\cos(\varphi_1 + \varphi_2)) \right]$$

Of trigger and associated particles

Two-particle distribution ↔ two-particle probability distribution

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) \left[1 + \overline{f}_c(\mathbf{p}_1, \mathbf{p}_2) \right]$$

Choose a "trigger particle (1)" in an event.

Yield of associated particles (2) ↔ conditional probability distribution

$$f(\mathbf{p}_{T2} | \mathbf{p}_{T1}) = \frac{f(\mathbf{p}_{T1}, \mathbf{p}_{T2})}{f(\mathbf{p}_{T1})} \quad \left(\neq f(\mathbf{p}_{T2}) \right)$$

Here
$$f(\mathbf{p}_{T2}|\mathbf{p}_{T1}) = f(\mathbf{p}_{T2}) \left[1 - \frac{2p_{T1}p_{T2}}{N\langle p_{T}^2 \rangle} (\cos(\varphi_1 - \varphi_2) - \overline{v}_2 \cos(\varphi_1 + \varphi_2)) \right]$$

can be plotted with N = 8000, $\langle p_T^2 \rangle$ = (500 MeV/c)², p_{T1} = 6 GeV/c, p_{T2} = 4 GeV/c, $v_2(p_{T2})$ = 0.2 and \bar{v}_2 = 0.1.

N.B., J. Phys. Conf. Ser. 110 (2008) 032005

Associated yield

ZYAM-subtracted associated yield

ZYAM-subtracted associated yield

From the associated yield to the correlation term (cumulant)

$$f(\mathbf{p}_{T2} | \mathbf{p}_{T1}) = \frac{f(\mathbf{p}_{T1}, \mathbf{p}_{T2})}{f(\mathbf{p}_{T1})} = f(\mathbf{p}_{T2}) \left[1 + \bar{f}_c(\mathbf{p}_{T1}, \mathbf{p}_{T2}) \right]$$

subtracting $\alpha f(\mathbf{p}_{T2})$ from $f(\mathbf{p}_{T2}|\mathbf{p}_{T1})$ does not entirely suppress the "trivial" (= single-particle) influence of the emission anisotropy.

DIVIDING (by $f(\mathbf{p}_{T2})$) seems to be better suited for that purpose.

(In real life, things are not so simple, see later.)

Description & measurement

of two-particle correlations

A two-step process:

- no model dependence at the level of the two-particle distribution;
- isolating the correlation term: some modeling required

All collisions are non-central: single-particle yields depend on azimuth

The particle azimuthal distribution is a 2π -periodic function:

$$\frac{\mathrm{d}N}{\mathrm{d}\varphi} \propto f(\varphi) = \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} \mathbf{v_n} \mathrm{e}^{\mathrm{i}n\varphi} = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} \mathbf{v_n} \cos n\varphi \right]$$

where $v_n = \langle \cos(n\varphi) \rangle$ is real (in the absence of parity violation).

All collisions are non-central: two-particle yields depend on azimuth

All collisions are non-central: two-particle yields depend on azimuth

Let
$$\Delta \varphi \equiv \varphi_2 - \varphi_1$$
 and $\varphi^{\text{pair}} \equiv x \varphi_1 + (1-x) \varphi_2$ (0 $\leq x \leq$ 1)

All collisions are non-central: two-particle yields depend on azimuth

Let
$$\Delta \varphi \equiv \varphi_2 - \varphi_1$$
 and $\varphi^{\text{pair}} \equiv x \varphi_1 + (1-x) \varphi_2$ (0 $\leq x \leq$ 1)

At fixed $\Delta \varphi$ the two-particle azimuthal distribution is a 2π -periodic function of φ^{pair} :

$$\frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi_{1}\mathrm{d}\varphi_{2}} = \frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi^{\mathrm{pair}}\mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} v_{n}^{\mathrm{pair}}(\Delta\varphi) \,\mathrm{e}^{\mathrm{i}n\varphi^{\mathrm{pair}}}$$

N.B. & J.-Y.Ollitrault, Phys. Rev. C 70 (2004) 064905

At fixed $\Delta \varphi$ the two-particle azimuthal distribution is a 2π -periodic function of $\varphi^{\rm pair}$:

$$\frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi_{1}\mathrm{d}\varphi_{2}} = \frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi^{\mathrm{pair}}\mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} v_{n}^{\mathrm{pair}}(\Delta\varphi) \,\mathrm{e}^{\mathrm{i}n\varphi^{\mathrm{pair}}}$$

Why should one characterize the 2-particle distribution $\propto f(\mathbf{p}_1,\mathbf{p}_2)$ or the 2-particle correlation (cumulant) $\bar{f}_c(\mathbf{p}_1,\mathbf{p}_2)$ with these $v_n^{\mathrm{pair}}(\Delta\varphi)$?

- because there exist model-independent methods to measure them accurately (the "usual" flow analysis methods);
- and because they are easier to compute in theoretical studies than the 2-particle distribution / cumulant itself.
- Cf. the advantages of v_n over the "squeeze-out ratio" and similar quantities.

N.B. & J.-Y.Ollitrault, Phys. Rev. C 70 (2004) 064905

At fixed $\Delta \varphi$ the two-particle azimuthal distribution is a 2π -periodic function of $\varphi^{\rm pair}$:

$$\frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi_{1}\mathrm{d}\varphi_{2}} = \frac{\mathrm{d}^{2}N}{\mathrm{d}\varphi^{\mathrm{pair}}\mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} v_{n}^{\mathrm{pair}}(\Delta\varphi) \,\mathrm{e}^{\mathrm{i}n\varphi^{\mathrm{pair}}}$$

where $v_n^{\mathrm{pair}}(\Delta \varphi)$ is in general complex-valued!

There is no $\varphi^{\text{pair}} \to -\varphi^{\text{pair}}$ symmetry:

At fixed $\Delta \varphi$ the two-particle azimuthal distribution is a 2π -periodic function of φ^{pair} :

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\varphi_1 \mathrm{d}\varphi_2} = \frac{\mathrm{d}^2 N}{\mathrm{d}\varphi^{\mathrm{pair}} \mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} v_n^{\mathrm{pair}} (\Delta\varphi) \, \mathrm{e}^{\mathrm{i}n\varphi^{\mathrm{pair}}}$$

where $v_n^{\mathrm{pair}}(\Delta\varphi)$ is in general complex-valued!

There is no $\varphi^{\text{pair}} \to -\varphi^{\text{pair}}$ symmetry:

At fixed $\Delta \varphi$ the two-particle azimuthal distribution is a 2π -periodic function of φ^{pair} :

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\varphi_1 \mathrm{d}\varphi_2} = \frac{\mathrm{d}^2 N}{\mathrm{d}\varphi^{\mathrm{pair}} \mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \sum_{n=-\infty}^{+\infty} v_n^{\mathrm{pair}} (\Delta\varphi) \, \mathrm{e}^{\mathrm{i}n\varphi^{\mathrm{pair}}}$$

where $v_n^{\text{pair}}(\Delta\varphi)$ is in general complex-valued!

$$\frac{\mathrm{d}^2 N}{\mathrm{d}\varphi^{\mathrm{pair}}\mathrm{d}\Delta\varphi} \propto \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{+\infty} \left(v_{c,n}^{\mathrm{pair}}(\Delta\varphi) \cos n\varphi^{\mathrm{pair}} + v_{s,n}^{\mathrm{pair}}(\Delta\varphi) \sin n\varphi^{\mathrm{pair}} \right) \right]$$

where $v_{c,n}^{\text{pair}}(\Delta\varphi) \equiv \langle \cos n\varphi^{\text{pair}} \rangle$ and $v_{s,n}^{\text{pair}}(\Delta\varphi) \equiv \langle \sin n\varphi^{\text{pair}} \rangle$ are now real numbers, that characterize $f(\mathbf{p}_1, \mathbf{p}_2)$ in a model-independent way.

N.B. & J.-Y.Ollitrault, Phys. Rev. C 70 (2004) 064905

From the two-particle distribution to the two-particle cumulant

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) [1 + \bar{f}_c(\mathbf{p}_1, \mathbf{p}_2)]$$
 (1)

- First, extract the first Fourier coefficients v_n , $v_{c,n}^{\text{pair}}$, $v_{s,n}^{\text{pair}}$: well under control, uncertainty increases with n.
- These are model-independent numbers: publish them! (and let the theorists try to reproduce them with their favorite code).

From the two-particle distribution to the two-particle cumulant

$$f(\mathbf{p}_1, \mathbf{p}_2) = f(\mathbf{p}_1) f(\mathbf{p}_2) [1 + \bar{f}_c(\mathbf{p}_1, \mathbf{p}_2)]$$
 (1)

- First, extract the first Fourier coefficients v_n , $v_{c,n}^{\text{pair}}$, $v_{s,n}^{\text{pair}}$: well under control, uncertainty increases with n.
- © Compute the single- and two-particle distributions $f(\mathbf{p}_1)$, $f(\mathbf{p}_2)$, $f(\mathbf{p}_1,\mathbf{p}_2)$ (or rather, a good approximation thereof).
- Perform the division.

Issue: Equation (1) holds at fixed reaction-plane orientation — doing it for various event-plane bins introduces unwanted terms.

From the two-particle distribution to the two-particle cumulant

For a fixed orientation of the reaction plane

$$\frac{f(\mathbf{p}_1, \mathbf{p}_2)}{f(\mathbf{p}_1) f(\mathbf{p}_2)} = 1 + \bar{f}_c(\mathbf{p}_1, \mathbf{p}_2)$$

In practice, one measures numbers of particles or particle pairs, that (might) have significant fluctuations from event to event:

$$\frac{\langle N_{\text{pairs}}(\mathbf{p}_1, \mathbf{p}_2) \rangle}{\langle N_1(\mathbf{p}_1) \rangle \langle N_2((\mathbf{p}_2)) \rangle} \neq \frac{f(\mathbf{p}_1, \mathbf{p}_2)}{f(\mathbf{p}_1) f(\mathbf{p}_2)}$$

so that some arbitrariness enters the determination of $f_c(\mathbf{p}_1, \mathbf{p}_2)$ at this point. ("Usual" assumption: it vanishes at some point in phase space...)

Correlation studies

● The most appropriate way to remove the effect of the anisotropy in single-particle emission ("anisotropic flow") is to perform a division, rather than a subtraction.

Model-independent numbers are preferable to model-dependent ones! (Even if they do not possess an intuitive interpretation.)

Further work is needed, also on the theoretical side.