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Models of high-pr parton energy loss
reproduce the data remarkably well
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Models of energy loss

reproduce the remarkably well

L1 11111 | L1 1 11 itl 1 :i:
; . 5 t | O PHENIX 7t° @ STAR h
= dN"/dy=200-350 9 e e . N R
SPS e WA98 ni’ (17.4 AGeV) 8 (PHENIX 0—-10%) 1
ANy RN 2 " PHENIX 7" data © ' " PHENIX 7 data ©
= AN/ W‘Bof 1200 | ”; SCI jet quenching model SCI jet quenching model
m PHENIX = (130 AGeV) o) 5L 0—10% Cronin effect only L 90— 30%
—— dN®%/dy=2000-3500 Lé N
v PHENIX ° (200 AGeV) O 8 dp
1 *STARK' (200AGev) M= & I
U 0.5 - §o . ) ﬂ
p e ’ tARAR TR S
— E &ﬂﬂ’o‘ﬂ*oéoﬂ*{}‘ﬂﬁ&% (AR ﬁ’
Q_ - g t t } 0 } t t f ) t
— '®) PHENIX =" data ¢ PHENIX 7¥ data ©
é © SCI jet quenching model - SCI jet quenching model
o O 15+ 40— 50% + 60 — T0%
>
0.1 A0 < e 1| 20-30% | 30-407%
- - < ;_f 1 H %‘ <H; — ! ) [ [ ! I I [ ! ) ] }
& N ﬂ L. . | . : —
no— & ‘ﬁ’ o .
1 - T ' 1 T - 05 é”’?ﬂ«ﬁ»ﬁﬁhﬁﬁ % | 1 H 0 0-10% centrality
- Aut+Au @ s =200 Ge)
0 ® PHI g " PHENIX n¥ data o PHENIX 70 data o |~ — T T T T T T T~ |
0.8~ Central = (O_ 10%) e Ti= SCI jet quenching model SCI jet quenching model —— —
Ti: L5 80— 92% Cronin effect only - 1 | Jev +
—_— 1=

1

' j AEeﬁ;AE(I':O) i g . %H&ﬂ—ﬂ?

1

ALICE Physics Working Group 4 — CERN, July 19, 2006



Models of high-pr parton energy loss
Welcome to the realm of acronyms!

@ Radiative vs. collisional energy loss

@ Theories and models of radiative energy loss
— LPM-effect based approaches: BDMPS-Z & AMY
— opacity expansion: GLV; (AS)W
— medium-enhanced higher-twist effects
— medium-modified MLLA

@ Theories and models of collisional energy loss
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Models of high-pr parton energy loss

Two different “categories” of models of parton energy loss, depending
on the basic underlying process:

"radiative” process (Bremsstrahlung) “collisional” process

R
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also “in vacuum”, but controlled
by the presence of a medium
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Models of high-pr parton energy loss

Two different “categories” of models of parton energy loss, depending
on the basic underlying process:

inelastic elasftic
"radiative’ process (Bremsstrahlung) "colisional” process
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also “in vacuum”, but controlled
by the presence of a medium
— collisions!
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Inelastic energy loss
Models based on the Landau-Pomeranchuk-Migdal effect [1/4]

The propagating high-p parton traverses a thick target.

It radiates soft gluons, which scatter coherently on independent color
charges in the medium, resulting in a medium-modified gluon energy
spectrum.

Multiple soft scattering limit

D)
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Inelastic energy loss
Models based on the Landau-Pomeranchuk-Migdal effect [2/4]

Independent scattering centers: A > 1/u
mean free path it Y el screening mass

/\ﬂ Note the assumption, which actually underlies /\ﬂ
all models of in-medium parfonic energy loss

T T R L IR R O
2
Coherent scatterings: /{.on ~ o < L (medium length)
k2
coherence leng’th ‘E e e, 2wA
of the emitted gluon T

Baier, Dokshitzer, Mueller, Peigne, Schiff (BDMPS); Zakharov
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Independent scattering centers: A > 1/u
mean free path it Y el screening mass

/\ﬂ Note the assumption, which actually underlies /\ﬂ
all models of in-medium parfonic energy loss

T T R L IR R O
2
Coherent scatterings: /{.on ~ —u; < L (medium length)
) at 2WA
coherence length C N e =
of the emitted gluon %,_/ H
LPM only affects gluons with w < w, = 5qL2
2
Medium characterized by the transport coefficient § = “7

Baier, Dokshitzer, Mueller, Peigne, Schiff (BDMPS); Zakharov
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Inelastic energy loss
Models based on the Landau-Pomeranchuk-Migdal effect [3/4]

2
Gluon coherence length .o = MLQ)\
= gluon enerqgy spectrum per unit path length w N ~ Q

d/ | gL?
L: w— >~ ag\/—
For a path length o= o 5
dld

Average medium-induced energy loss: AE :/ w@ dw ~ aw,. aS(jLz

ie- BDMPS-Z, only two paramefters: g & L
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Inelastic energy loss
Models based on the Landau-Pomeranchuk-Migdal effect [4/4]

What about the infrared (w — 0) behaviour?

@ BDMPS-Z: coherent regime requires
Niol Sildsersl. o\ <l = apnp — )\,U,2 == O(l GQV)

@ AMY (Arnold, Moore, Yaffe; Jeon, Gale, Turbide):
interaction of the fast parton with a thermal bath

v LPM energy loss for A~ 1/g:T , p~gT = leep > & w2>T

v/ and for 0 < w < Erpm =~ 1 GeV, Bethe-Heitler regime
v

Energy loss per unit length proportional to the incoming energy

In addition, they allow possible gains in the parton energy

ie- AMY approach, three parameters: 1', L & as
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Inelastic energy loss

Models based on an opacity expansion [1/2]

The high-pr parton interacts with a thin targeft:

the energy loss results from an incoherent superposition of very few
X = L/X single hard scattering processes along the path length L.

LA “opacity” (= number of collisions)

=> gluon energy spectrum per unit path length

d7 (L) 0 <L> 12 e
Bl s Y # 0s\/ — within LPM
A w W

wdwdzg ol ol

leads to an average energy loss AE « L (for a static medium)

Gyulassy, Levai, Vitev (GLV); Wiedemann

L
e three parameters: (X)' H & L

T e (linear) density of scattering centers

D)
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Inelastic energy loss

Models based on an opacity expansion [2/2]

@ Within GLV, radiated gluons restricted to w > u = O(500 MeV),
"common value” of the screening mass and the plasmon excitation

1

@ Energy loss actually dominated by energetic gluons w = @, = 5 “F

(# LPM, where soft gluons with w < w. mainly contribute)

@ Only very few (=3) gluons are radiated by the fast parton
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Inelastic energy loss

Approach based on a Twist expansion

In QCD, a cross-section can actually be expanded in powers of L
where ¢ is the exchanged (hard) momentum: q

4

"twist expansion”

In vacuum, higher-twist terms are power suppressed (!).
But in a medium, these terms may become enhanced: Al/3 /q2

= allow systematic computation of energy loss

e

formulated in terms of "medium-modified fragmentation functions”
(which can be evolved with DGLAP...)

Guo, Wang & Wang

Parameters (?): u, T
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Inelastic energy loss

A model based on modified parfon splitting functions

Effect of the medium modeled by a (phenomenological) modification of
the Altarelli-Parisi parton splitting functions, considering e.g.

2L e
Pyqe(z) = CF ( ( 1_fz Y (1‘|‘Z))
where f,,.qa = 0 in the absence of a medium (/med only parameter)
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Inelastic energy loss

A model based on modified parfon splitting functions

Effect of the medium modeled by a (phenomenological) modification of
the Altarelli-Parisi parton splitting functions, considering e.g.

2L e
Pyqe(z) = CF < ( 1_]; Y (1‘|‘Z))
where f,,.qa = 0 in the absence of a medium (/med only parameter)

= modification of the "hump-backed plateau” of longitudinal particle

distributions within a jet computed using MLLA
NB, Wiedemann
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Inelastic energy loss

A model based on modified parfon splitting functions

Effect of the medium modeled by a (phenomenological) modification of
the Altarelli-Parisi parton splitting functions, considering e.g.

2L e
Pyqe(z) = CF < ( 1_]; Y (1‘|‘Z))
where f,,.qa = 0 in the absence of a medium (/med only parameter)

= modification of the "hump-backed plateau” of longitudinal particle

distributions within a jet computed using(MLLA)
NB, Wiedemann

Modified Leading Logarithmic Approximation (of QCD)
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Inelastic energy loss

A model based on modified splitting functions

Effect of the medium modeled by a (phenomenological) modification of
the Altarelli-Parisi , considering e.g.

B o) =Cr (2(11+—fjed) = Z)>

where f,..q = 0 in the absence of a medium (/med only parameter)

= modification of the "hump-backed plateau” of longitudinal particle

distributions within a computed using MLLA
NB, Wiedemann

dN
dIn(1/x)

--- in medium, Ej,=17.5 GeV

— in vacuum, Ej;=17.5 GeV enhancement

= TASSO,Vs=35GeV

8

at small z

depletion
at large
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Inelastic energy loss
A few model-independent remarks [1/2]

actually also valid for models of elastic energy loss

@ All partons do not lose the same amount of energy, even when
they traverse the same in-medium path length L

= nuclear modification factor Ra4 mostly reflects the few partfons
which have lost little energy

e use of "quenching weights” (= probability to lose a given energy)

@ The medium traversed by the parfon is not static, but in expansion!

e~ model-builders introduce dynamics (most often, a la Bjorken),
which may lead to a redefinition (¢ — g¢.sx) of the parameters, to
the introduction of new ones (70, 7)), or to a change in scaling
properties (AFEqry o L instead of L*)

S
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Inelastic energy loss

A few model-independent remarks [2/2]

@ A model of partonic energy loss has to be supplemented by several
other elements to allow comparison with the data:
— parton distribution functions inside the nuclei (shadowing, Cronin
effect...)

— production cross-sections

= seemingly similar conclusions of different models may actually differ

— Turbide et al. (AMY approach), PRC 72 (2005) 014906:

reproduce 244 for pions assuming 7; = 370 MeV, 7; = 0.26 fm/c,

dN
— = 1260 & s
dy

No need for initial state effects as shadowing & the Cronin effect
dN9
— GLV, PRL 89 (2002) 252301:

=00
. s e .
invoke competition between shadowing, Cronin effect and
partonic energy loss to obtain a flat R44. @‘
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Elastic energy loss

The elder (Bjorken, 1984), yet still in its infancy...

Bjorken (1984), Thoma & Gyulassy (1991), Braaten & Thoma (1991),
Wang, Gyulassy & Plumer (1995), Mustafa et al. (1998), Lin, Vogt &
Wang (1998): dFE, /dz ~ 0.3 — 0.5 GeV/fm: negligible!
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Elastic energy loss

The elder (Bjorken, 1984), yet still in its infancy...

Bjorken (1984), Thoma & Gyulassy (1991), Braaten & Thoma (1991),
Wang, Gyulassy & Plumer (1995), Mustafa et al. (1998), Lin, Vogt &
Wang (1998): dFE, /dz ~ 0.3 — 0.5 GeV/fm: negligible!

Then, all of a sudden...

Mustafa & Thoma (2003), Dutt-Majumder et al. (2004), Zapp,
Ingelmann, Rathsman & Stachel (2005), Wicks, Horowitz, Djordjevic &
Gyulassy (2006), Peshier (2006): it is sizable! (either for heavy quarks
only, for c only, for light quarks as well...)
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Elastic energy loss

The elder (Bjorken, 1984), yet still in its infancy...

Bjorken (1984), Thoma & Gyulassy (1991), Braaten & Thoma (1991),
Wang, Gyulassy & Plumer (1995), Mustafa et al. (1998), Lin, Vogt &
Wang (1998): dFE, /dz ~ 0.3 — 0.5 GeV/fm: negligible!

Then, all of a sudden...

Mustafa & Thoma (2003), Dutt-Majumder et al. (2004), Zapp,
Ingelmann, Rathsman & Stachel (2005), Wicks, Horowitz, Djordjevic &
Gyulassy (2006), Peshier (2006): it is sizable! (either for heavy quarks
only, for c only, for light quarks as well...)

Yet, at the same fime...
Peigne, Gossiaux, Gousset (2005): yes, elastic energy loss is negligible,
because the is formed inside the medium, not at infinity.
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Elastic energy loss

The elder (Bjorken, 1984), yet still in its infancy...

Bjorken (1984), Thoma & Gyulassy (1991), Braaten & Thoma (1991),
Wang, Gyulassy & Plumer (1995), Mustafa et al. (1998), Lin, Vogt &
Wang (1998): dFE, /dz ~ 0.3 — 0.5 GeV/fm: negligible!

Then, all of a sudden...

Mustafa & Thoma (2003), Dutt-Majumder et al. (2004), Zapp,
Ingelmann, Rathsman & Stachel (2005), Wicks, Horowitz, Djordjevic &
Gyulassy (2006), Peshier (2006): it is sizable! (either for heavy quarks
only, for c only, for light quarks as well...)

Yet, at the same fime...
Peigne, Gossiaux, Gousset (2005): yes, elastic energy loss is negligible,
because the is formed inside the medium, not at infinity.

Conclusion... all this is very premature (and too “politics-driven”?)
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Inelastic energy loss

a teaser slide...

Could one compute the transport coefficient ¢ ab initio, even in the
non-perturbative case?

Idea: use Maldacenas conjecture of a correspondence between QCD
and its dual weakly coupled theory of gravity living in a 5-dimensional
anti-de Sitter space-time.

More practically, since the dual of QCD is unknown, replace it by

some (" 3.

V2T (2

s
govii = I é)(4) \/ g VTP
3 Liu, Rajagopal, Wiedemann

gsyM X # number of degrees of freedom is proportional to

LT e entropy density
But... the result is not " “ (may not hold for QCD)
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Inelastic energy loss
Additional model-dependent remarks [1/2]

Drawing conclusions from fits to the may not be easy!

"Raais fragile” (Eskola, Honkanen, Salgado, Wiedemann)

© PHENIX n°
STAR h

PHOBOS h

. BRAHMS h

Data cannot allow to distinguish between ¢ = 5 or 15 GeV*/fm
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Inelastic energy loss
Additional model-dependent remarks [2/2]

Let me be even more pessimistic / skeptical...

@ Eskola, Honkanen, Salgado, Wiedemann, NPA 747 (2005) 511:
G =>5—15 GeV?/fm, with (L) ~ 2 fm
which leads to strong (& questionable?) conclusions
@ Arleo, hep-ph/0601075:
G =0.3—0.4 GeV*/fm, with (L) ~ 5 fm
..but Francois 1. fixed the latter value a priori & 2. assumed that all
partons lose energy

@ Baier & Schiff, hep-ph/0605183:
G=1-3 GeV*/fm, with (L) ~ 3 fm
restricting the region of validity of the LPM effect
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