NEW METHOD FOR THE FLOW ANALYSIS

N. Borghini (Brussels), P.M. Dinh (Saclay), J.-Y. Ollitrault (Saclay)

- Standard analysis methods
 - \rightarrow two-particle correlations
 - Limited sensitivity

Phys. Lett. B**477** (2000) 51 Phys. Rev. C**62** (2000) 034902

- New method(s)
- → multiparticle correlations
- Integrated flow
- Differential flow
- Increased sensitivity
- Acceptance corrections

Phys. Rev. C**63** (2001) 054906 nucl-th/0105040 (Phys. Rev. C, in press)

FLOW

Flow \equiv azimuthal correlation with the reaction plane:

Fourier expansion of the azimuthal distributions of outgoing particles with respect to the <u>unknown</u> reaction plane:

$$\frac{\mathrm{d}N}{\mathrm{d}\bar{\phi}} = A\left(1 + \mathbf{v_1}\,\cos\bar{\phi} + \mathbf{v_2}\,\cos2\bar{\phi} + \cdots\right)$$

where:

$$v_n = \left\langle e^{in\bar{\phi}} \right\rangle.$$

 v_1 "directed" flow, v_2 "elliptic" flow.

At CERN SPS, v_1 and $v_2 \simeq 3\%$ for pions and protons.

At RHIC (PHENIX, PHOBOS, STAR): $v_2 \simeq 5 - 6\%$

 \rightarrow see J. Lauret, A. H. Tang.

WHY FLOW?

• Flow determination \Rightarrow equation of state:

- Signature of collective behavior at ultrarelativistic energies.
- Influence of flow on two-particle correlations (HBT, Coulomb...).
- Observation of possible parity violation requires accurate flow determination.

FLOW ANALYSIS METHODS (simplified)

- **4** Two-particle methods (• = $\langle e^{in(\phi_1 \phi_2)} \rangle$):
 - * "subevent" method (P. Danielewicz and G. Odyniec):

 \rightarrow correlation between 2 subevents;

- **4 two**-particle correlation function analysis (R. Lacey): $C(\Delta \phi)$;
- ♥ Multiparticle methods NEW!

$$= \langle e^{in(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle, \qquad \bullet = \langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \rangle \cdots$$

- (♥) cumulants of the event flow vector;
- vv cumulants of multiparticle azimuthal correlations.

STANDARD FLOW ANALYSIS

Coefficient v_n extracted from the measured two-particle azimuthal correlations:

$$\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle = \left\langle e^{in\bar{\phi}_1} \right\rangle \left\langle e^{-in\bar{\phi}_2} \right\rangle + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c$$

$$\equiv v_n^2 + \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c .$$

Expansion of two-particle correlations:

$$\bullet \quad \bullet \quad = \quad \bullet \quad \bullet \quad + \quad \bullet$$
measured flow nonflow

"STANDARD" ASSUMPTION: nonflow sources of two-particle azimuthal correlations are negligible:

$$v_n^2 \gg \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c$$
.

The measured two-particle azimuthal correlations are only due to flow:

$$v_n = \pm \sqrt{\langle e^{in(\phi_1 - \phi_2)} \rangle}.$$

TWO-PARTICLE NONFLOW CORRELATIONS a simple example

Central collision \rightarrow NO flow, $v_n = 0$.

Strong direct back-to-back correlations:

$$\Rightarrow \langle \cos 2(\phi_1 - \phi_2) \rangle > 0.$$

The standard analysis assumes
$$\mathbf{v_2} = \sqrt{\langle \cos 2(\phi_1 - \phi_2) \rangle}...$$

$$\Rightarrow \mathbf{v_2} \neq 0$$

TWO-PARTICLE NONFLOW ("DIRECT") **CORRELATIONS**

Many sources for $\langle e^{in(\phi_1-\phi_2)}\rangle_c = \bigcirc$

- ♦ total momentum conservation;
- ♦ total momentum \sim :

 ♦ quantum "HBT" correlations;

 ♦ final state (strong/Coulomb) interactions; $\left.\begin{array}{c} 1 \\ N \end{array}\right.$
- ♦ other sources? (minijets...)

 \Rightarrow the assumption $v_n^2 \gg \langle e^{in(\phi_1 - \phi_2)} \rangle_c$ underlying the standard analysis holds only if

$$v_n \gg \frac{1}{N^{1/2}}.$$

Possibility: compute and subtract nonflow correlations.

OK, but nonflow correlations may not be under control...

Important: two-particle nonflow correlations scale as $\frac{1}{N}$ \Rightarrow dominant for peripheral collisions see Aihong Tang's talk!!

STANDARD FLOW ANALYSIS AT SPS

"Standard" assumption: $v_n^2 \gg \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle_c \sim \frac{1}{N}$.

- v_1 and $v_2 \simeq 3\%$ for pions and protons;
- total multiplicity in the collision $N \simeq 2500$.
- \Rightarrow the assumption is not valid.

Pion directed flow at SPS (1996 data)

□: "data" [NA49, Phys. Rev. Lett. **80** (1998) 4136]

•: data — HBT [Phys. Lett. B477 (2000) 51]

 \times : data - (HBT & p_T conservation) [PRC**62**, 034902]

NEW METHOD

Idea: extract flow from multiparticle azimuthal correlations.

Method: compare flow with direct 4-particle correlations

 \Rightarrow eliminate (non-negligible) extra terms:

cumulant of the multiparticle correlations.

Remember that \bullet \bullet = \bullet \bullet \bullet

NEW METHOD: INTEGRATED FLOW $v(\mathcal{D})$

Cumulant of the four-particle azimuthal correlation:

$$\left\langle \left\langle e^{in(\phi_1 - \phi_2 + \phi_3 - \phi_4)} \right\rangle \right\rangle \equiv \left\langle e^{in(\phi_1 - \phi_2 + \phi_3 - \phi_4)} \right\rangle - 2\left\langle e^{in(\phi_1 - \phi_2)} \right\rangle^2$$
$$= -v_n^4 + O\left(\frac{1}{N^3}\right)$$

Increased sensitivity: analysis valid if $|v_n| \gg \frac{1}{N^{3/4}}$, better than $v_n \gg \frac{1}{N^{1/2}}$.

systematic error
$$\delta(v_n^4) \simeq \frac{1}{N^3}$$

Statistics: N_{evts} events, M particles per event $\rightarrow N_{\text{evts}}M^4$ quadruplets

statistical error
$$\delta(v_n^4) \simeq \frac{1}{M^2 \sqrt{N_{\text{evts}}}}$$
.

DIFFERENTIAL FLOW $v'(p_T, y)$

- 1. Measure the integrated flow $\langle e^{in\phi} \rangle = v_n$ using many particles (\bullet): reaction plane determination.
- 2. Study the correlation between the azimuth ψ of a given particle (\times) and the reaction plane: $\langle e^{-in\phi}e^{in\psi}\rangle$.

$$\begin{pmatrix} \mathbf{x} & \bullet \\ \bullet & \bullet \end{pmatrix} = \begin{pmatrix} \mathbf{x} & \bullet \\ \bullet & \bullet \end{pmatrix} + \dots + 2 \begin{pmatrix} \mathbf{x} & \bullet \\ \bullet & \bullet \end{pmatrix} + \dots + \begin{pmatrix} \mathbf{x} & \bullet \\ \bullet & \bullet \end{pmatrix}$$

$$v_n^3 v_n' \qquad \langle e^{-in\phi} e^{in\psi} \rangle_c \langle e^{in(\phi_1 - \phi_2)} \rangle_c \qquad O\left(\frac{1}{N^3}\right)$$

Idea: compare the flow term with the direct multiparticle azimuthal correlation.

 \Rightarrow Cumulant of the (1+3)-particle azimuthal correlation:

$$\left\langle \left\langle e^{in(\phi_1 - \phi_2 - \phi_3)} e^{in\psi} \right\rangle \right\rangle \equiv \left\langle e^{in(\phi_1 - \phi_2 - \phi_3)} e^{in\psi} \right\rangle - 2 \left\langle e^{-in\phi} e^{in\psi} \right\rangle \left\langle e^{in(\phi_1 - \phi_2)} \right\rangle$$
$$= -v_n^3 \left[v_n' + O\left(\frac{1}{(Nv_n)^3}\right) \right].$$

CUMULANTS $\langle |Q_n|^{2p} \rangle$: PRACTICAL FLOW ANALYSIS

"old version": Phys. Rev. C**63** (2001) 054906

- 1. Compute $Q_n = \frac{1}{\sqrt{M}} \sum_{k=1}^{M} e^{in\phi_k}$ for a given event.
- 2. Calculate the generating function $\mathcal{G}(z) = e^{z^*Q_n + zQ_n^*}$, then average over events.

Why? because
$$\langle \mathcal{G}(z) \rangle = 1 + \dots + |z|^2 \langle |Q_n|^2 \rangle + \dots + \frac{|z|^4}{4} \langle |Q_n|^4 \rangle + \dots$$
, and

the $|Q_n|^{2p}$ give the multiparticle azimuthal correlations: $|Q_n|^2 = \frac{1}{M} \sum_{i,k=1}^{M} e^{in(\phi_j - \phi_k)}$

3. Deduce the cumulants, taking $\ln \langle \mathcal{G}(z) \rangle$:

$$\ln \langle \mathcal{G}(z) \rangle = 1 + \dots + |z|^2 \langle \langle |Q_n|^2 \rangle + \dots + \frac{|z|^4}{4} \langle \langle |Q_n|^4 \rangle + \dots$$

- 4. Extract the flow, using $\ln \langle \mathcal{G}(z) \rangle = \ln I_0(2|z|\langle \bar{Q}_n \rangle)$.
 - \rightarrow for instance, $\langle |Q_n|^4 \rangle \equiv \langle |Q_n|^4 \rangle 2\langle |Q_n|^2 \rangle^2 = -\langle \bar{Q}_n \rangle^4 = -M^2 v_n^4$.

INTERFERENCE BETWEEN v_1 AND v_2

 \Rightarrow Measurements of v_n require $|v_{2n}| \ll N v_n^2$.

Problem for directed flow at RHIC, not for elliptic flow.

BETTER CUMULANTS: ANY HARMONIC

"new version": nucl-th/0105040

1. Calculate the generating function $\mathcal{G}(z) = \prod_{k=1}^{M} \left(1 + \frac{z^* e^{in\phi_k} + z e^{-in\phi_k}}{M}\right)$, then average over events.

$$\langle \mathcal{G}(z) \rangle = 1 + \dots + \frac{|z|^2}{M} \left\langle \sum_{j \neq k} e^{in(\phi_j - \phi_k)} \right\rangle + \dots + \frac{|z|^4}{4M^4} \left\langle \sum_{j,k,l,m} e^{in(\phi_j + \phi_k - \phi_l - \phi_m)} \right\rangle + \dots$$

- 2. Deduce the cumulants, taking $M\left(\langle \mathcal{G}(z)\rangle^{1/M} 1\right) = |z|^2 \left\langle\!\!\left\langle e^{in(\phi_j \phi_k)}\right\rangle\!\!\right\rangle + \cdots$
- 3. Extract the flow, using $(\to \text{STAR} \ \textcircled{v}) \ M\left(\langle \mathcal{G}(z)\rangle^{1/M} 1\right) = \ln I_0(2v_n|z|)$, and/or performing the appropriate acceptance corrections $(\to \text{PHENIX} \ \textcircled{v})$.
- 4. Post your paper on nucl-ex.

ACCEPTANCE CORRECTIONS

Detector acceptance/efficiency: $A(\phi) = \sum_{k=-\infty}^{+\infty} a_k e^{ik\phi}$.

Events with a fixed orientation of the reaction plane:

$$\langle e^{in\phi} \rangle = a_n + \sum_{k \neq 0} (a_{n+k} - a_n a_k) v_k e^{ik\Phi_R}$$

Imperfect acceptances mix different flow harmonics!

Insert $\langle e^{in\phi} \rangle$ in the generating function \rightarrow new relations between cumulants and flow.

For instance:

$$c_2{2} = 0.042 v_1^2 + 0.659 v_2^2$$

 $c_2{4} = -0.002 v_1^4 - 0.487 v_2^4$

instead of $c_2\{2\} = v_2^2$, $c_2\{4\} = -v_2^4$ (perfect acceptance).

COLLECTIVE FLOW AND MULTIPARTICLE AZIMUTHAL CORRELATIONS

- At SPS energies, two-particle azimuthal correlations due either to collective flow or nonflow effects are of the same magnitude. \Rightarrow the standard analysis is close to its validity limit $v_n \gg 1/N^{1/2}$.
- New method, using four-particle azimuthal correlations, allows measurements of smaller integrated flow values $v_n \gg 1/N^{3/4}$.

Sensitivity (and accuracy) can still be improved, with 2p-particle (p > 2) correlations (\rightarrow higher statistics).

- Detector acceptance corrections.
- Differential flow.

Method currently tested/used by E895, NA49, PHENIX, STAR. First results available!

Two-particle and multiparticle methods may yield different values $v_n\{2\} \neq v_n\{4\}...$

"NEW" (unthought of) two-particle correlations!