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Abstract We present various predictions for the anisotropic collective flow of particles in heavy-ion col-

lisions, in particular scaling laws of the second and fourth harmonics v2 and v4, derived within ideal fluid

dynamics. We also discuss qualitatively the deviation from the ideal behaviour expected in an out-of-

equilibrium scenario.
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In a non-central nucleus–nucleus collision, the

impact parameter selects a preferred direction in

the plane transverse to the beam, breaking the az-

imuthal symmetry. The single-particle transverse-

momentum distribution (averaged over many events)

is not isotropic, but presents a harmonic modula-

tion, referred to as anisotropic flow
[1]

and quanti-

fied in terms of transverse-momentum- and rapidity-

dependent Fourier coefficients vn(pT ,y). Since this

anisotropy results from the reinteractions between

outgoing particles, it carries information on the

strength and the frequency of these interactions
[2]

.

In particular, if they are frequent enough, i.e., if the

mean free path λ is much smaller than the size R

of the system (Knudsen number Kn ≡ λ/R ≪ 1),

then the latter expands according to the laws of

fluid dynamics[3]. Modulo some assumptions, one can

make analytical predictions for the behaviour of the

distribution of outgoing particles, including its az-

imuthal anisotropies vn, which are presented in sec-

tion 1. In the opposite case when there are not

enough collisions to ensure thermal equilibrium be-

fore anisotropic flow develops (Kn & 1), qualitative

arguments are yet possible, that lead to further pre-

dictions, see section 2.

1 Predictions of ideal fluid dynamics

Consider first the case in which reinteractions be-

tween particles are frequent enough to ensure the

equilibration of the system at an early stage. There

follows a hydrodynamic-like expansion in the vacuum,

dominated by the many collisions between particles.

When the system becomes dilute, however, its ex-

pansion is that of a free-streaming gas. Provided the

transition between both regimes is sharp enough —

which is a reasonable approximation when comput-

ing particle spectra if collective expansion dominates

over thermal motion — the momentum distribution

of the outgoing particles is given by the Cooper–Frye

formula
[4]

E
dN

d3p
= C

∫

Σ

exp

(

−
pµuµ(x)

T

)

pµ dσµ, (1)

where pµ is the particle momentum, uµ the 4-velocity

of the fluid, Σ the freeze-out hypersurface, and C a

constant. In the context of heavy-ion collisions, the

validity of this formula amounts to having a small

enough freeze-out temperature T .

In the small-T limit, the integral (1) can be per-

formed by means of a saddle-point approximation
[5]

.

One has to distinguish two kinds of particles.
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1. Slow particles have a velocity p/m that equals the

fluid velocity u at some point; this is where the par-

ticle energy in the fluid frame pµuµ reaches its mini-

mum m. If T is small enough∗, the dominant contri-

bution to the integral in equation (1) comes from the

neighborhood of this point, yielding

E
dN

d3p
= c(m)f

(pT

m
,y
)

, (2)

where pT and y are the particle transverse momen-

tum and (longitudinal) rapidity. The function f is

universal for all particle types, while c(m) is a con-

stant which depends on the particle species (actually,

on the particle mass only). Thus, different particle

types have similar momentum spectra, up to an over-

all factor, provided they are plotted as a function of

pT /m, as long as the latter is smaller than the maxi-

mum fluid velocity umax.

The mass-dependent constant c(m) drops in the

definition of the anisotropic-flow harmonic coeffi-

cients vn(pT /m,y), which are thus the same for all

slow particles, for any harmonic n. In particular, all

particles at a given transverse velocity pT /m have the

same elliptic flow v2, giving rise to the mass-scaling

property that heavier particles have smaller elliptic-

flow values, as qualitatively measured at the SPS
[6]

and at RHIC
[7, 8]

.

2. Fast particles , on the other hand, have a veloc-

ity larger than the maximum fluid velocity. One can

show
[5]

that they are mostly emitted by the regions

of the fluid with a velocity u parallel to that of the

particle and close to its maximum value. These con-

ditions minimize pµuµ in equation (1), leading to a

particle spectrum

E
dN

d3p
∝ exp

(

pT umax(y,φ)−mT

√

1+umax(y,φ)2

T

)

,

(3)

where mT is the usual particle transverse mass, while

umax(y,φ) denotes the maximal transverse velocity of

the fluid along the direction of the particle transverse

momentum. Neglecting for simplicity the φ depen-

dence of umax, this yields a mT -spectrum which does

not scale with mT , in qualitative agreement with ex-

perimental observations
[9]

.

The next step consists in deriving the anisotropic-

flow harmonics for fast particles. For that, let us

write the maximum fluid velocity as a Fourier series

umax(φ) = umax(1 + 2V2 cos(2φ) + 2V4 cos(4φ) + · · · ),

where for the sake of brevity we have dropped the

dependence on y and neglected odd harmonics. Ex-

panding the exponential in equation (3), one first ob-

tains the cos(2φ) term:

v2(pT ,y)=
V2(y)umax(y)

T

(

pT −
mT umax(y)
√

1+umax(y)2

)

.

(4)

As for slow particles, this equation implies a mass

ordering of the v2 values of fast particles, although

different particle species no longer have the same el-

liptic flow at a fixed transverse velocity. Inspecting

then the term in cos(4φ) and using the fact that V4

is of order (V2)
2 if umax(φ) is a smooth function, one

finds that for pT large enough and to leading order in

the fluid-velocity anisotropy one has

v4(pT ,y)=
v2(pT ,y)2

2
(5)

for each individual particle type. Several caveats re-

garding this relation should be taken in consideration.

To begin with, corrections to the expansion to leading

order in the anisotropy can be sizable, as was exempli-

fied in a numerical simulation of a mid-central Au-Au

collision
[5]

. A second point to keep in mind is that the

relation (5) is non-linear, so that any averaging — be

it over transverse momentum, over rapidity, or over

particle type — will spoil it:

〈v4(pT ,y)〉=
1

2
〈v2(pT ,y)2〉>

1

2
〈v2(pT ,y)〉2,

where 〈· · · 〉 denotes the specific average considered.

Eventually, one should not forget that equation (5)

only holds for pT large enough, which might be

an issue since one expects departures from equilib-

rium to be more pronounced for larger transverse

momenta
[10, 11]

.

2 Out-of-equilibrium scenario

The matter created in an ultrarelativistic heavy-

ion collision expands into the vacuum, thus its col-

lective movement is characterized by a Mach number

∗More precisely, if T ≪mu2
max/(1+u2

max), where umax denotes the maximum fluid velocity.
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Figure 1: Sketches of the dependence with the number Kn−1 of collisions per particle of the anisotropic-flow

harmonics v2 (top left panel) and v4 (bottom left panel) and of the resulting ratio v4/(v2)
2 (right panel).

of order unity
[12]

. This Mach number can actually

be expressed as the product of two other dimension-

less numbers, namely the Knudsen number Kn —

which gives an estimate of the inverse of the num-

ber of collisions undergone by particles — and the

Reynolds number Re — which quantifies the impor-

tance of viscous phenomena. Thus, a decrease in the

number of reinteractions between particles (increas-

ing Kn) amounts to growing viscous effects (decreas-

ing Re).

Although a detailed quantitative study of the

out-of-equilibrium evolution of the matter created in

nucleus–nucleus collisions would require a numeri-

cal transport approach, yet one can make qualitative

predictions for the behaviour of anisotropic flow
[13]

.

Thus, if there is no reinteraction between the outgoing

particles to leave an imprint of the initial anisotropy

in position space, then the momentum distribution of

the particles is isotropic (if it was such initially): no

anisotropic flow develops, vn(Kn−1 = 0)= 0.

Consider next the case where outgoing particles

undergo few collisions. Intuitively, one builds up more

flow by increasing the number of collisions, and this

seems to be confirmed in transport computations, in

which the amount of elliptic flow increases with the

interaction cross-section
[2]

. In parallel, the fourth

harmonic v4 also increases with Kn−1. As a conse-

quence, one can expect a decrease of the ratio v4/(v2)
2

when the number of collisions per particle increases
[14]

(see figure 1).

Eventually, when the number of collisions per par-

ticle is large, the system equilibrates; increasing Kn−1

further no longer affects anisotropic flow, which sat-

urates to its “hydrodynamical” value
[14]

.

Using the general behaviour outlined above, that

in a non-equilibrated system anisotropic flow in-

creases with the number of collisions and is smaller

than if it develops while the system is in equilibrium

— in which case it no longer depends on Kn —,

we can make further predictions. First, while for

v2 or v4 the (saturating) value reached in the hy-

drodynamical regime is a maximum, for the ratio

v4/(v2)
2 it is a minimum. More precisely, we know

from section 1 that for fast identified particles, at

given transverse momentum and rapidity, this mini-

mum equals 1
2

(up to large-eccentricity corrections).

Therefore, in a non-equilibrated scenario one expects

v4(pT ,y)/v2(pT ,y)2 > 1
2

(see figure 1), in agreement

with experimental findings at RHIC
[15]

.

Next, if the system is not equilibrated when

anisotropic flow develops, v2 depends on the particle

density, which is directly proportional to the inverse

of the Knudsen number
[13]

. This is arguably what

one sees at RHIC on the dependence of elliptic flow
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on rapidity
[16]

and on the centrality (after accounting

for the difference in the initial geometry) and energy

of the collision, using different colliding nuclei
[17]

.

3 Discussion

Different scenarios for the degree of equilibration

of the matter created in ultrarelativistic nucleus–

nucleus collisions during the ∼ 5 first fm/c when

anisotropic flow mostly develops (at least, close to

midrapidity) lead to varying predictions for the be-

haviour of the harmonics vn. It might prove haz-

ardous to argue in favor of one scenario on the basis

of the size of anisotropic flow only — in the equilib-

rium case, the size of v2 is directly proportional to

the sound velocity
[13]

, so that one can accomodate

weaker anisotropies by assuming a smaller velocity.

The scaling laws predicted in the various approaches,

however, are more robust.

In that spirit, we have discussed several scaling

behaviours of the anisotropic-flow harmonics. In the

case of a truly equilibrated medium described by ideal

fluid dynamics, vn(pT /m,y) is universal for all species

of slow particles (those whose velocity is smaller than

the maximum fluid velocity), reflecting the fact that

all particles with a given velocity p/m preserve the

anisotropy of the fluid cell from which they originate.

For fast particles, elliptic flow obeys equation (4) and

the ratio v4(pT ,y)/v2(pT ,y)2 equals 1
2

[5]
.

If, on the contrary, anisotropic flow has developed

while the system was not in equilibrium, the latter

ratio should be larger than this lower bound. Addi-

tionally, the amount of flow (especially, of v2, which is

the largest, hence the more easily measured) should

vary with the number of collisions undergone by the

particles. This is reflected in any variation with the

system size, in particular, by any dependence of the

measured v2 (divided by the initial spatial eccentric-

ity, to cancel out geometrical effects) on a characteris-

tic length, since such a dependence violates the scale

invariance of perfect fluid dynamics.

Data from Au–Au and Cu–Cu collisions at RHIC

seem to favor the latter scenario. If indeed anisotropic

flow develops at RHIC in a non-equilibrated medium,

then one can anticipate that in Pb–Pb collisions at

LHC it will probe a system closer to equilibrium. This

would manifest itself in particular in an increased el-

liptic flow v2, as well as a smaller ratio v4/(v2)
2 at

given transverse momentum and longitudinal rapid-

ity.
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