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Abstract. The jet-quenching explanation of the suppressed Ipighadron yields at RHIC implies
that the multiplicity distributions of particles inside atjand jet-like particle correlations differ
strongly in heavy-ion collisions at RHIC or at the LHC frono#ie observed a'e~ or hadron
colliders. We present a framework for describing the medinduced modification, which has
a direct interpretation in terms of a probabilistic mediomdified parton cascade, and which
treats leading and subleading partons on an equal footirgsh@w that our approach implies
a characteristic distortion of the single inclusive diafition of soft partons inside the jet. We
determine, as a function of the jet energy, to what extentstife fragments within a jet can be
measured above some momentum cut.
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Introduction. Among the most notable results from the first years of runaingHIC
stand the deficit in high transverse-momentum hadrons anduppression of leading
back-to-back hadron correlations observed in central Auedllisions with respect to
expectations from scaling the yields measure@pcollisions [1]. These observations
are consistent with the “jet-quenching” picture: beforeytihadronize in the vacuum,
partons produced in the dense matter created in head-onu\celfsions lose a signif-
icant fraction of their energy through an enhanced rachatiosoft gluons [2, 3, 4].

Irrespective of the details of the implementation of the medenhanced radiation of
gluons — either through coherent multiple soft-momentuangfers [5, 6], or through
single hard scattering [3] — jet-quenching models of intdgsadiative) energy loss are
quite successful in explaining present light-hadron deienfRHIC [7, 8, 9]. However,
there remains much room for technical improvement over ttisting formulations
of inelastic energy loss. Thus, a generic feature of thepeoaghes is that they only
consider the medium-induced enhancement in gluon radidiothe leading parton,
discarding the medium influence on subleading partons. Sacapproximation may
remain under control when dealing with leading-hadron pobidn; yet, predictions
involving subleading particles become questionable, Herijet shapes, which may
become experimentally accessible at the LHC, or for intriaye-particle correlations.
Similarly, in existing models energy-momentum conseorais not explicitly conserved
at each parton splitting, but only globally, through vasad hoc corrections.

A novel formulation of medium-induced parton energy loss wecently introduced
in Ref. [10], which aims at correcting some of the shortcagsiaf standard approaches.
Thus, it is the first one that deals equally with the varioulittspgs of both leading
and subleading partons inside a shower. Furthermore gtraatically conserves energy-
momentum at each parton splitting.



Formalism. One of the most testing ground of the color structure of QCpravided
by the jets that are created @e~ or in pp/pp collisions. The asymptotic shape of
the distribution of hadron momenta inside a jet can be coatpakactly, especially at
small momentum fractions = p/Eje, by resumming infrared-singular terms to all or-
ders, within the so-called Modified Leading Logarithmic Apximation (MLLA) of
QCD [11, 12, 13]. Color coherence thus results in destragtiterference between par-
tons, leading to a suppression of smaltadrons. This amounts, to double and single
logarithmic accuracy in IfiL/x) and INQ/Aeff) — WhereQ ~ Ejet is the jet virtuality
and/Agf an infrared cutoff which is eventually fitted to experimdi@a — to an angular
ordering of the sequential parton decays within the showihn, leading-order splitting
functions. An important prediction of this angular-ordépgrobabilistic parton cascade
is, to next-to-leading ordey/as, the characteristic “hump-backed plateau” shape of the
distribution of parton momenta inside a jet, represented asction of I(1/x). The
parton shower, evolved down to an infrared cuteff\¢f, is eventually identified to a
hadron jet, by mapping locally each parton onto a hadronddl&arton—Hadron Du-
ality”, LPHD): for each hadron type, the hadron distributiequalK" times the parton
distribution, wherek" is a proportionality factor of order unity. This resummatiand
the LPHD prescription give a good description of the measlmegitudinal distributions
of hadronsD"(x, Q%) over a wide energy range, bothéfie [14, 15] and inpp [16]
collisions. For instance, Fig. 1 shou¥(x, Q%) for inclusive hadrons inside 17.5 GeV
jets inete~ annihilations [14], together with the MLLA prediction with" = 1.35.

The formalism developed in Ref. [10] to describe the medinduced distortion of
jets reduces to the MLLA baseline in the absence of a mediums fiew approach
involves different approximations from the standard medaslparton energy loss that
are currently used in the phenomenology of RHIC data. Thresgmt model compar-
isons to RHIC data start with a medium-modified energy specof radiated gluons,
ditot = d|vac dimed [2, 3, 4]. The part correspondin% tgkthe “normal” vacuum aadi
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tion shows a double logarithmic dependent®¥d= 2w 12 Its integral ovek gives

rise to the leading 1@? term in the DGLAP evolution equation. This contrasts to the
k-integration of d™&4 which is infrared- and ultraviolet-safe [6] and leads taualrar-
enhanced “higher-twist” contribution] 6L /Q?, whereqis the transport coefficient that
characterizes the medium, subleading in an expansiofi@%,lout enhanced with re-
spect to other such terms by a factor proportional to the gdocal extension- L of

the target. In practice, however, the parton virtuality sloet enter the existing com-

parisons to experimental data, where one rather consideksintegrated gluon distri-
bution co 47 neglecting th&)?-dependence. In addition, existing approximations only

dw
include the extra source of gluon radiatioii"8® for the leading parton, dropping it for
the further medium-induced splittings of subleading pastim the shower.

The obvious way to improve over this state of the art is toaeplthe double differ-
ential gluon spectrumI® by di*t in all leading and subleading splitting processes of
a medium-modified parton cascade. This can only be donematvionte-Carlo ap-
proach, which we intend to develop in future studies. The fatdl fully analytical step
in that direction consists in using an extra approximatiostead of using the computed
k-integrated medium-induced distribution, we replaced ilconstant,,eg. In the kine-
matic regime tested at RHIC, this assumption amounts to dasiomcertainty as that
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FIGURE 1. Longitudinal distribution &/dIn(1/x) of inclusive hadrons inside a jet of enerfy; =

17.5 GeV, as a function of Ifi/x) = In(Ejet/p), as measured by TASSO [14] and within MLLA (solid
curve: fmeq= 0; dashed curvefyeg= 0.8).

arising from whether one should use the multiple-soft scit) approach or the single

hard scattering picture. We have then used the mediumaimtblsx;mectrumud'd—':;Ed on the

same level a&)dé—f, i.e., as a leading logarithmic correction [10]. With thissatz, our
formalism ensures energy-momentum conservation at eatbnpsplitting, and treats
all leading and subleading parton splittings on the samerfgo

Phenomenological predictions. The replacement of the medium-induced contribution

to the gluon spectrumoc"d—rged by a constantf,eq in the kinematically relevant range
of w amounts to considering “medium-modified parton splittingdtions” that differ
from the standard ones by enhancing their singular partsfagtar (1 + fneg).t This
formulation allows us to follow the same line of technicayj@nents as that used for
the calculation of jet multiplicity distributions in the sénce of a medium [13], and to
compute the momentum distribution of partons within a padascade. To exemplify
the effect of the medium-enhanced gluon radiation on thehbatked plateau of
particle production, we compare in Fig. 1 the longitudinatmbution inside a jet with
energyEjet = 17.5 GeV in the casefneq= 0 (no medium) andmeq= 0.8 (which allows
us to reproduce the light-hadron suppression measured & R]). One clearly sees
that the effect of the medium is a strong distortion of therdiation, with a depletion
of the number of particles at large and correspondingly a largely enhanced emission
of particles at smabk: due to energy-momentum conservation in the parton castaele
energy which in the vacuum is taken by a single laxgearton is redistributed over many
smallx partons in the presence of a medium.

Once the longitudinal multiplicity distribution inside etjis known, a straightforward
integration yields the number of hadrons inside the jet wiinsverse momenta larger

1 Such a modification of parton splitting functions was diseukin Ref. [17], where it results from con-
sidering nuclear-enhanced twist-four parton matrix eletme studies of deeply inelast# scattering.



than a given cut. One can calculate this multiplicity fosjatith the same energy both
in the presence of medium effects (in which case, the lowemgaues some control
on the high-multiplicity soft background over which the givelops) and in vacuum,
and compute their ratio. For jets withe; = 17.5 GeV and medium effects modeled
by a constant coefficient,,eg= 0.8, one finds [10] that the ratio is smaller than 1 for
psUt > 1.5 GeVk, while the medium-induced enhancement in soft-partictelpction
becomes dominant for smaller values of the transverse-mtumecut. The crossover
value is close to that reported by the STAR Collaborationtierapts at measuring the
excess of particles inside the back jet over the soft backgtd18]. Although we did
not consider several effects (varyikg: and in-medium path lengths, geometry. . .) that
should be included in a more thorough comparison betweercalgulation and the
STAR data, the reasonable agreement we find is a further matenergy is indeed
redistributed from high- to lowpartons through the influence of the medium. For jets
of energyEjer = 100— 200 GeV, which should be accessible at the LHC, the crossover
between enhancement and depletion should take place avérae momentaSt ~
4—7 GeVLk [10]. This should leave a window above the upper kinematimioary of
the soft background, in which there is an enhancement ofahmiltiplicity, thereby
allowing a more detailed characterization of the mediurnagced radiation.

Conclusion. We have reported a first step towards a description of paréscatles
developing in a medium, which conserves energy-momentweacit successive parton
splitting, and treats all partons in the shower on the saragrig [10]. The simplified
analytical formalism we have presented, which will serva asference for future more
realistic Monte-Carlo implementations, is able to repr@semi-quantitatively several
characteristic features of RHIC data, such as the suppresshigh-momentum particle
yields and the enhanced soft-particle distribution asgedito highpr trigger particles.
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