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Multiparticle azimuthal correlations
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P M DINH and J-Y OLLITRAULT
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Abstract. First observations of elliptic flow in Au-Au collisions at RHIC have been interpreted as
evidence that the colliding system reaches thermal equilibrium. We discuss some of the arguments
leading to this conclusion and show that a more accurate analysis is needed, which the standard flow
analysis may not provide. We then present a new method of flow analysis, based on a systematic
study of multiparticle azimuthal correlations. This method allows one to test quantitatively the col-
lective behaviour of the interacting system. It has recently been applied by the STAR Collaboration
at RHIC.
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1. Introduction

One of the first results that came from Au-Au collisions at theRelativistic Heavy Ion
Collider (RHIC) at Brookhaven was the observation that elliptic flow is by a factor of
2 larger than at SPS [1]. This was interpreted as an evidence that thermal equilibrium
in ultrarelativistic heavy ion collisions had been achieved for the first time at RHIC [2].
This issue of thermalisation is crucial: it is a prerequisite to the formation of a quark-
gluon plasma in these collisions, since this new state of matter is defined assuming thermal
equilibrium. But it is a non-trivial issue: although we knowthat many strongly interacting
particles are formed in a heavy ion collision at RHIC, the system is expanding so rapidly
that it cannot be described as a static thermal bath; thermalequilibrium is at best achieved
locally, if the mean free path of particles is much smaller than a typical size of the system.

One usually distinguishes several types of thermal equilibria: equilibrium with respect to
inelastic collisions which constrains the relative abundances of particle species [3] (“chem-
ical” equilibrium). On the other hand, equilibrium with respect to elastic collisions con-
strains momentum distributions, and implies in particularthat they are isotropic in the local
rest frame. This is the “kinetic” equilibrium, on which we concentrate here. Kinetic equi-
librium itself has two aspects. One is the equilibration between longitudinal and transverse
degrees of freedom, i.e., the implication that in the local rest frame, longitudinal and trans-
verse momenta are of the same order of magnitude. This aspectof thermalisation can be
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discussed from first principles at the partonic level [4], and there is now a vast literature on
this subject [5]. But experimental signatures deal in fact rather with equilibration among
the two transverse degrees of freedom. Due to the high Lorentz contraction at ultrarela-
tivistic energies, the typical transverse size is much larger than the longitudinal size, so that
this “transverse equilibrium” is probably easier to achieve than “longitudinal-transverse
equilibrium”.

Elliptic flow is a phenomenon which results from final state interactions: if there are no
mutual collisions between the produced particles, elliptic flow simply vanishes. For this
reason, it is widely believed to be the most sensitive probe of transverse kinetic equilib-
rium [6].

In Sec. 2., we recall the definition of elliptic flow and explain the mechanism produc-
ing elliptic flow at ultrarelativistic energies. We then discuss the centrality dependence of
elliptic flow, as well as the transverse momentum dependenceof elliptic flow of identified
particles. We shall see that measurements of elliptic flow may provide a clean signature
of transverse thermalisation. In Sec. 3., we discuss the methods used to analyse elliptic
flow. We show that “standard” methods are unable to provide reliable measurements at
ultrarelativistic energies: “nonflow” correlations, which are neglected in the standard anal-
ysis, may bias the observations, in particular the centrality dependence of elliptic flow. We
then present a new method recently developed to overcome thelimitations of the standard
analysis, based on a cumulant expansion of multiparticle azimuthal correlations. Applica-
tion of this method to STAR data will be presented, and the issue of thermalisation will be
discussed in this context.

2. Elliptic flow: a signature of transverse thermalisation

2.1 Directed and elliptic flow: definitions

In a non-central nucleus-nucleus collision, the impact parameter defines a reference di-
rection in the transverse plane. One usually calls “reaction plane” the plane spanned by
the impact parameter and the collision axis. It turns out that azimuthal angles of outgoing
particles are most often correlated to this reference direction. This is the phenomenon of
anisotropic flow. If φ denotes the azimuthal angle of a particle with respect to thereaction
plane (see Fig. 1), such a correlation means that theφ distribution is not flat. The latter is
usually expanded in Fourier series [7]:

dN

dφ
∝ 1 + 2

∞
∑

n=1

vn cos(nφ), (1)

where terms proportional tosin(nφ) vanish due to theφ → −φ symmetry. The Fourier
coefficientsvn characterize the strength of anisotropic flow:

vn = 〈cos(nφ)〉 =
〈

einφ
〉

, (2)

where brackets denote a statistical average. The first two Fourier coefficientsv1 andv2

are usually called “directed flow” and “elliptic flow”, and have been measured at various
colliding energies, from below 50 MeV per nucleon up to RHIC energies. [8]
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Figure 1. Nucleus-nucleus collisions viewed in the transverse plane. xlab andylab are
fixed directions in the laboratory system. The dash-dotted line is the direction of impact
parameter, or reaction plane.

This phenomenon is of crucial importance for the following reason: if the nucleus-
nucleus collision were a mere superposition of independentnucleon-nucleon collisions, the
φ distribution would be flat: a pair of colliding nucleons doesnot see the impact parameter
of the whole nucleus-nucleus collision. For this reason, anisotropies in theφ distribution
must result from final state interactions between the produced particles. This is illustrated
below, where we discuss a mechanism that produces elliptic flow at ultrarelativistic ener-
gies.

2.2 The physics of elliptic flow

zlab

T

P

Figure 2. Typical directions of outgoing particles at ultrarelativistic energies.

At ultrarelativistic energies, the azimuthal anisotropy is dominated by elliptic flow, and
v2 is positive. This can be easily understood. A large number ofparticles are created in
an almond-shaped region, represented by the shaded area in Fig. 2. Interactions between
these particles result in a pressure which is highest at the center of the almond, and zero
outside. At a given point, the resulting force per unit volume is opposite to the pressure
gradient. Now, the gradient is larger along the smaller direction of the almond, which is
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precisely the direction of the reaction plane. Thus one expects stronger collective motion
in the direction of the reaction plane (i.e., withcos(2φ) > 0) than in the perpendicular
direction (withcos(2φ) < 0). This results in a positive value ofv2 defined by Eq. (2),
which was predicted in Ref. [6] and later observed at the top AGS energy [9] and at SPS
[10].

2.3 Centrality dependence of elliptic flow

Hydrodynamical models, which assume thermal equilibrium throughout the evolution of
the system, are able to provide stable, quantitative predictions for this effect. Indeed, ellip-
tic flow is essentially determined by two ingredients, whichwe discuss separately.

The first ingredient is the shape of the almond in Fig. 2, i.e.,the distribution of energy
in the transverse plane, which is well controlled theoretically. The momentum anisotropy
v2 calculated in hydro models is proportional to the anisotropy of the almond (defined as
the relative difference between the smaller and the larger dimension of the almond) [6].
When plotted as a function of centrality (as estimated from the total charged multiplicity
produced in the collision), this anisotropy decreases linearly, and so does the elliptic flow
v2 in hydrodynamic models. This is illustrated by recent calculations displayed in Fig. 3.
For the most central collisions, the almond becomes a circleandv2 vanishes by symmetry.
What is less obvious is that the maximum value ofv2 occurs for impact parameters as large
as 12 fm or even higher.
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Figure 3. Elliptic flow as a function of centrality for a Au-Au collision at RHIC. The
curves are predictions of a hydrodynamic model, from Ref. [11], for various choices of
initial conditions. The data are taken from Ref. [1].

The second essential ingredient inv2 is pressure (resulting from final state interactions),
which converts the anisotropy of the initial distribution into anisotropy of the momentum
distribution. Pressure is included in hydro models throughan equation of state, which is
an input of the model. The thermodynamical quantity which matters here, rather than the
pressure itself, is the velocity of sound,cs ≡

√

dP/dǫ (with ǫ the total energy density),
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which determines the pressure gradient. For a given value ofcs, v2 decreases linearly with
centrality, as discussed above, but the slope (i.e., the absolute magnitude ofv2 for a given
centrality) depends oncs. As one could expect intuitively, a higher value ofcs (“hard”
equation of state) produces a higher value ofv2. With a softer equation of state than the
one chosen in the calculations displayed in Fig. 3, one couldprobably obtain a better fit
to STAR data, which show a remarkably linear decrease ofv2 over most of the centrality
range.

Note that the value ofv2 calculated in hydro models depends weakly on the scenario
chosen for the longitudinal expansion, which is to a large extent arbitrary.

To summarise, one can make a rather firm statement that thermalisation implies a linear
decrease ofv2 with centrality, with a slope that depends (in fact not very strongly) on the
equation of state. The centrality dependence of elliptic flow therefore yields valuable in-
formation: deviations from a linear decrease can be used to signal a phase transition [12]
or a departure from thermal equilibrium [13]. If thermalisation is only partial, departures
from thermalisation are expected to be more significant for the more peripheral collisions:
the size of the system is smaller, so that particles undergo fewer collisions, andv2 should
be smaller than the hydro prediction. Then, the maximum ofv2 occurs at less peripheral
collisions than if thermalisation if fully achieved. This is indeed observed in several spe-
cific transport models like UrQMD [14] (which however predicts a much too small value
of v2), QGSM [15], and AMPT [16]. These models contain final state interactions but do
not assume perfect thermalisation.

hydro, sBC�b=0 = 0:31E)�b=0 = 4:11C)�b=0 = 10:1A)�b=0 = 9:13D)�b=0 = 23:9B)STAR

MPC Au+Au� 130A GeV
dNg=dy = dNg(b = 0)=dy

v 2atmidrap
idity(jyj<
2)

10.80.60.40.20

0.120.10.080.060.040.020
Figure 4. Predictions from a transport calculation. The strength of final state interac-
tions increases from bottom to top. As interactions increase,v2 increases, and the maxi-
mum ofv2 shifts towards more peripheral collisions. From D. Molnar and M. Gyulassy
[17].

This modification of the centrality dependence for a partially thermalized system is il-
lustrated in Fig. 4, which displays a systematic study of thevariation ofv2 as the strength
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of interactions increases [17]. This shows that one can in principle relate the observed
centrality dependence ofv2 to the degree of thermalisation of the system. However, it is
worth noting that experimental results vary significantly depending on the method used to
analyse elliptic flow [1,18]. We come back to this issue in Sec. 3.

2.4pT dependence of elliptic flow

Hydrodynamical calculations were also able to predict [19]thepT dependence ofv2 for
identified hadrons, in remarkable agreement with experimental results [20]:v2 is almost
linear in pT for pions and significantly smaller for protons. This is illustrated in Fig. 5.
However, these non-trivial features are also reproduced bytransport models [14–16], which
do not assume full thermalisation.
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Figure 5. pT dependence of elliptic flow for pions, kaons and protons, measured by
the STAR Collaboration at RHIC, together with predictions from a thermal model, from
Ref. [20].

In addition, the latter predict a saturation [17] forpT above 2 GeV which is not seen in
hydrodynamical calculations, suggesting that many elastic collisions are necessary to build
the flow at highpT . This saturation, which is seen in the data [21] has also beenproposed
as a possible signature of jet quenching [22].

3. Analysing elliptic flow with multiparticle correlations

Measuring elliptic flow, and more generally anisotropic flow, is far from obvious. Indeed,
the orientation of the reaction plane is unknown experimentally, so that the azimuthal angle
φ defined in Fig. 1 is not a measurable quantity. This means thatelliptic flow defined
by Eq. (2) is not directly measurable. Onlyrelative azimuthal angles can be measured
experimentally.

6 Pramana – J. Phys.,Vol. ??, No. ?, Month Year



Multiparticle azimuthal correlations

3.1 Flow from azimuthal correlations

The standard flow analysis [23] relies on the key assumption that particles are uncorrelated.
This allows one to write [24]:

〈

e2i(φ1−φ2)
〉

=
〈

e2iφ1

〉 〈

e−2iφ2

〉

= (v2)
2, (3)

where brackets denote an average over pairs of particles belonging to the same event and
we have used the definition of elliptic flow in complex form, Eq. (2). From the measured
two-particle average in the left-hand side, one thus obtains the elliptic flowv2, up to a sign.

One could also use multiparticle observables, such as the following four-particle aver-
age:

〈

e2i(φ1+φ2−φ3−φ4)
〉

=
〈

e2iφ1

〉 〈

e2iφ2

〉 〈

e−2iφ3

〉 〈

e−2iφ4

〉

= (v2)
4, (4)

with φ1, φ2, φ3 andφ4 the angles of particles belonging to the same event. However, such
equations are not quite correct, since they neglect correlations between particles, which
contribute to the above averages. We call these additional contributions “nonflow correla-
tions”. We now estimate the magnitude of nonflow correlations by means of a very simple
example, and then discuss to what extent they may bias experimental results.

3.2 Simple illustration of nonflow correlations

Figure 6. Illustration of nonflow correlations:M = 14 particles are produced in
M/2 = 7 collinear pairs.

In order to illustrate nonflow correlations, we consider thefollowing example: assume
that in each event,M/2 pairs of particles are emitted, where both particles in a pair have
collinear momenta, but pairs are emitted with random orientations (see Fig. 6). Since
azimuthal angles of the pairs are randomly distributed, elliptic flow defined in Eq. (2)
vanishes. On the other hand, averages in the left-hand sidesof Eq. (3) and Eq. (4) do not
vanish. In each event, there is a total ofM(M − 1)/2 particle pairs, among whichM/2
are correlated, hence the two-particle average
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〈

e2i(φ1−φ2)
〉

=
1

M − 1
. (5)

A similar reasoning yields the four-particle average:

〈

e2i(φ1+φ2−φ3−φ4)
〉

=
2M(M − 2)

M(M − 1)(M − 2)(M − 3)
=

2

(M − 1)(M − 3)
.

(6)

In this case, applying Eqs. (3) or (4) to obtain the flow, one would obtainv2 ∼ 1/
√

M ,
although there is no flow.

This example is by no means realistic, but does reproduce thecorrect order of magnitude
of nonflow correlations, which in practice arise from various effects such as quantum corre-
lations between identical particles, global momentum conservation, resonance decays [25],
etc.

3.3 Why nonflow correlations are important at SPS and RHIC

When flow is present, nonflow correlations produce anadditiveterm in the right-hand side
of Eq. (3), which becomes

〈

e2i(φ1−φ2)
〉

= (v2)
2 + O(1/M), (7)

where the last term is the nonflow contribution, whose order of magnitude is given by
Eq. (5). At SPS energies,M ≃ 2500 for a central Pb-Pb collision, whilev2 is of the order
of 3%: both terms in the right-hand side of Eq. (7) are of the same order, and one may no
longer ignore nonflow correlations. Similar arguments apply to directed flowv1.

One can show more explicitly that nonflow correlations are important at SPS by con-
sidering well-known sources of correlations, and estimating their contribution to the last
term of Eq. (7). For example, quantum correlations between identical particles (HBT cor-
relations) produce sizeable azimuthal correlations between particles with low relative mo-
menta. Taking this effect into account, one is led to revise significantly the values of the
flow given by the standard analysis. This is illustrated in Fig. 7 which shows the corre-
sponding modification in the case of pion directed flow. Accounting for correlations due
to global momentum conservation also leads to significant corrections.

At RHIC, both the elliptic flowv2 and the multiplicityM are higher, so that, following
Eq. (7), one may naively expect that nonflow correlations become negligible. However,
new effects may appear at RHIC which are not present at SPS, inparticular correlations
within minijets, which produce a number of almost collinearparticles, so that nonflow cor-
relations should also be considered. We shall see in Sec. 3.4that they are in fact probably
significant at RHIC.

Although it is impossible to give an exhaustive list of all physical effects producing
nonflow correlations, one can show under very general assumptions that their centrality
dependence follows the1/M scaling rule in Eq. (7). As a consequence, nonflow effects
are more important for peripheral collisions. In measuringthe centrality dependence ofv2,
which is crucially important for peripheral collisions as discussed in Sec. 2.3, one must
therefore carefully eliminate nonflow correlations.
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Figure 7. Directed flow of pions in Pb-Pb collisions at 158 GeV per nucleon. Open
squares: result of the standard flow analysis performed by NA49 [10]; full squares: after
subtraction of HBT correlations; stars: after subtractionof correlations from global
momentum conservation (from [25]).

3.4 Systematic elimination of nonflow correlations

Although one cannot estimate quantitatively the magnitudeof all nonflow correlations, one
can greatly reduce their contribution by combining the informations from two- and four-
particle averages, left-hand sides of Eqs. (3) and (4). Indeed, let us assume that particles
are pairwise correlated. Then, the four-particle average can be written as a sum of two
terms:

〈

e2i(φ1+φ2−φ3−φ4)
〉

=
〈

e2i(φ1−φ3)
〉 〈

e2i(φ2−φ4)
〉

+
〈

e2i(φ1−φ4)
〉 〈

e2i(φ2−φ3)
〉

. (8)

The first term in the right-hand side corresponds to the situation where particles 1 and 3
form one pair and particles 2 and 4 a second pair, while the second term corresponds to
the second possibility, 1 with 4 and 2 with 3 (the third possibility, namely 1 with 2 and 3
with 4, gives a vanishing contribution). If averages are taken over all possible 4-uplets of
particles, this equation becomes simply

〈

e2i(φ1+φ2−φ3−φ4)
〉

= 2
〈

e2i(φ1−φ2)
〉2

. (9)

Now, both sides of this identity are measurable quantities.Subtracting the right-hand side
from the left-hand side, one therefore obtains a quantity which vanishes if particles are
correlated pairwise. This is thecumulantof the four-particle correlation.
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Let us illustrate how this works on the simple explicit example discussed in Sec. 3.2.
From Eqs. (6) and (5), one obtains the following explicit expression for the cumulant:

〈

e2i(φ1+φ2−φ3−φ4)
〉

− 2
〈

e2i(φ1−φ2)
〉2

=
4

(M − 1)2(M − 3)
. (10)

It does not strictly vanish although particles are only correlated pairwise, but it is by a
factor 1/M smaller than the four-particle average (6): most of nonflow correlations are
eliminated by taking the cumulant.

Quite remarkably, the cumulant no longer vanishes if elliptic flow is present. It thus
yields an estimate ofv2, easily obtained by combining Eqs. (3) and (4):

〈

e2i(φ1+φ2−φ3−φ4)
〉

− 2
〈

e2i(φ1−φ2)
〉2

= −(v2)
4, (11)

and this estimate is essentiallyfree from nonflow correlations[26].
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Figure 8. Elliptic flow versus centrality. Circles: from the standard, two-particle
analysis; stars: from the cumulant of four-particle correlations (from [27]).

This method was recently applied to STAR data [18,27]. The corresponding centrality
dependence of elliptic flow is displayed in Fig. 8. The valuesof v2 from cumulants of four-
particle correlations are significantly smaller than thoseobtained with the standard flow
analysis, in particular for the most peripheral collisions. This is precisely where nonflow
effects are expected to give the largest contribution sincethe multiplicityM is smaller (see
Eq. (7)). The centrality dependence obtained with this method suggests that departures
from thermalisation at RHIC may be larger than was previously thought.

The cumulant expansion, which was illustrated above on 4-particle correlations, can be
generalized to an arbitrary number of particles [26]. The practical implementation of the
method is described in Ref. [28]. Flow, which is essentiallya collective phenomenon,
contributes to all orders, while the relative contributionof nonflow correlations decreases
as the order increases. Higher order cumulants therefore provide a unique possibility to
check quantitatively that azimuthal correlations are indeed of collective origin.
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