Parth integral for non-relativistic particle is 1D.

Here it is useful to write operators with a hat.

Let $\hat{H} = \frac{\hat{p}^2}{2 \ln t} + V(\hat{x})$

insert $1 = \int dx |x| < x|$ on the right of each $e^{-i\hat{H}t}M$ and $1 = \int dx |p| < p|$ on the left. There we obtain N factor of the form $(x;+|p|) < p|e^{-i\hat{H}t}M|x|$

=
$$\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 - i | \hat{H} t / N + O(N^{-2}) | x_{i} \rangle$$

= $\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 - i | (\frac{p_{i}^{2}}{2m} + V(x_{i})) | 1 x_{i} \rangle + O(N^{-2})$
= $\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 x_{i} \rangle eep(-i | H(p_{i}, x_{i})) | t_{i} \rangle$
= $\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 x_{i} \rangle eep(-i | H(p_{i}, x_{i})) | t_{i} \rangle$
= $\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 x_{i} \rangle eep(-i | H(p_{i}, x_{i})) | t_{i} \rangle$
= $\langle x_{i+1} | p_{i} \rangle \langle p_{i} | 1 x_{i} \rangle eep(-i | H(p_{i}, x_{i})) | t_{i} \rangle$

Now take N -> 0. $\langle x_{ol}e^{-iHt}|x_{o}\rangle = \lim_{N \to \infty} \int \frac{dx_{i}d\mu_{i}}{2\pi} \delta(x_{n} - x_{q})$ $\operatorname{eep}\left(-i\sum_{j=1}^{N} \frac{t}{N} \left[-p_{j} \frac{x_{j+n}^{2} - x_{j}}{t} + H(p_{j}^{2}, x_{j}^{2})\right]\right)$ where $\times_{N+1} = \times_{\mathbf{b}}$ define $t_j := (j-1)\frac{t}{N}$, $x(t_j) := x_j$, $p(t_j) := p_j$ For $N \rightarrow V$: $\frac{x_{j+1}-x_{j}}{\sqrt{2}} \rightarrow x(t_{j}), \quad \frac{x_{j}}{\sqrt{2}} \rightarrow \int_{0}^{t} dt' = 0$ $= \int \Omega x \Omega \rho \exp \left(-i \int dt' \left[\rho(t') \dot{x}(t') - H(\gamma(t')), x(t')) \right] \right)$

N.B. This is also valid when His