Problem C13.1 The Higgs doublet φ and the lepton doublets ℓ_{α} transform under SU(2) gauge transformations as

$$
\varphi \to V\varphi, \qquad \ell_\alpha \to V\ell_\alpha
$$

with $V\in$ SU(2), so that $\varphi^\dagger\ell_\alpha$ is invariant under SU(2) gauge transformations. Show that

$$
\widetilde{\varphi}:=\varepsilon\varphi^*
$$

with

$$
\varepsilon := \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right)
$$

 $\widetilde{\varphi} \to V \widetilde{\varphi}$

transforms like φ ,

(meaning that the complex conjugate $\bar{2}$ of the fundamental representation is equivalent to the fundamental representation 2). This implies that $\widetilde\varphi^\dagger \ell_\alpha$ is invariant under $\mathsf{SU}(2)$ gauge transformations as well.

Problem H13.1 Compute explicitly the photon polarization tensor $\Pi^{\mu\nu}(p)$ at 1-loop order in the HTL approximation, i.e., assuming $|p^\mu|\ll T$, to check the result that was quoted in the lecture.

- (a) Start with the expression on page 3 of Sec. 5.3. Do the Matsubara sum, e.g., by using mathematica. It is useful to partial fraction the result into terms with single poles.
- (b) First compute the spatial components Π^{mn} . Expand in $p/(\text{loop momentum})$, and keep only the leading order. Since you know from Sec. 5.3 that $\Pi^{mn}(p)$ in the HTL approximation vanishes at $p^0=0$, you can drop terms which do not depend p .
- (c) Use $p_{\mu}\Pi^{\mu\nu}(p)=0$ first to compute Π^{m0} and then Π^{00} .