Problem C10.1 In the lecture the adjoint representation of a Lie group was defined through its generators. A finite transformation acting on A^a can be written as

$$A \to UAU^{\dagger}$$

where $U = \exp(-i\theta^a T^a)$, and $A = A^a T^a$ with generators T^a in the fundamental representation. To check this, consider infinitesimal θ , meaning that you expand to first order in the θ^a , and compare the above transformation with the transformation $\exp(-i\theta^a T^a_A)^{bc} A^c$.

Problem H10.1

(a) For

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\h \end{pmatrix}$$

the Higgs potential reads

$$V = -\frac{\mu^2}{2}h^2 + \frac{\lambda}{4}h^4$$

Express μ and λ through the vacuum expectation value $\langle h \rangle \equiv v$ and the Higgs mass m_H .

(b) Compute explicitly the contribution to the thermal Higgs mass originating from the self-coupling λ . Hint: Express the Higgs doublet H in the interaction term $\lambda(H^{\dagger}H)^2$ via four real scalar fields as

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} \varphi_1 + i\varphi_2\\ \varphi_3 + i\varphi_4 \end{pmatrix}$$

and compute the self-energy for φ_i .

(c) Consider the effective Higgs potential in the dimensionally reduced 3D theory from the lecture:

$$V_{\rm eff} = \frac{m_{\rm eff}^2}{2}h^2 - \frac{g^3T}{16\pi}h^3 + \frac{\lambda}{4}h^4$$

Choose the temperature such that $m_{\text{eff}} = 0$. What value do you find for the temperature? Use g = 2/3 and g' = 1/3 for the gauge couplings, and $m_{\text{top}} = 175 \text{ GeV}$, $m_H = 125 \text{ GeV}$, v = 246 GeV. Determine the mass squared m^2 as the second derivative of this potential at its minimum. Requiring that the loop expansion parameter $\lambda T/m$ is smaller than 1, what is the upper limit on the value of the Higgs mass?