Thermal field theory Sheet 7	November 22, 2023
------------------------------	-------------------

Problem C7.1 Use the properies of the projection tensors listed in the lecture notes to show that the full gauge field propagator can be written as

$$G^{\mu\nu}(k) = P_t^{\mu\nu}(k)G_t(k) + P_l^{\mu\nu}(k)G_l(k) + \xi \frac{k^{\mu}k^{\nu}}{k^4}$$

where

$$G_i(k) = \frac{1}{-k^2 + \Pi_i(k)}$$

for i = t, l.

Problem C7.2 Use the Jacobi identity (see lecture) to check that the adjoint-representation generators T_A with $(T_A^a)^{bc} = -if^{abc}$ satisfy the Lie-algebra commutation relations

$$[T_A^a, T_A^b] = i f^{abc} T_A^c$$

Problem H7.1 In the lecture the order e^2 contribution to the pressure in QED was computed in Feynman gauge $\xi = 1$. Repeat the calculation in a general covariant gauge to check that the result is ξ -independent.

Problem H7.2 Convince yourself that the determinant of an $n \times n$ matrix M can be written as an integral over 2n Graßmann variables $\overline{c}_1, \ldots, \overline{c}_n, c_1, \ldots, c_n$ as

$$\det M = \int d\bar{c} \, dc \, e^{-\bar{c}Mc}$$

If you are content with this, you may restrict yourself with the cases n = 1 and n = 2.