Problem C5.1 In the lecture we assumed the usual formula for integration by parts to show that

$$
\int D\overline{\psi}D\psi \frac{\delta e^{iS}}{\delta \overline{\psi}(x)} \overline{\psi}(x') = -\int D\overline{\psi}D\psi e^{iS} \frac{\delta \overline{\psi}(x')}{\delta \overline{\psi}(x)}
$$

Check this in light of the fact that we are dealing with Grassmann fields. Hint: Try to see whether the relation

$$
\int d\overline{\psi} \frac{\partial f}{\partial \overline{\psi}} g = - \int d\overline{\psi} f \frac{\partial g}{\partial \overline{\psi}}
$$

holds for

$$
f = \overline{\psi} \, \overline{\psi}_1 \cdots \overline{\psi}_N, \qquad g = \overline{\psi} \psi_1 \cdots \psi_M
$$

where all ψ s and $\overline{\psi}$ s are Grassman variables, and N and M are integers.

Problem C5.2 Verify the following properties of the eigenbras and eigenkets of b^{\dagger} and b for the fermionic harmonic oscillator:

(a)

$$
\langle \overline{\psi}_1 | \psi_2 \rangle = \exp \left(-\frac{1}{2} \overline{\psi}_1 \psi_1 - \frac{1}{2} \overline{\psi}_2 \psi_2 + \overline{\psi}_1 \psi_2 \right)
$$

(b)

$$
\langle \overline{\psi} | \psi \rangle = 1
$$

(c)

$$
|\psi\rangle\langle\overline{\psi}| = (1 - \overline{\psi}\psi)|0\rangle\langle0| + \overline{\psi}|0\rangle\langle1| + \psi|1\rangle\langle0| - \overline{\psi}\psi|1\rangle\langle1|
$$

Problem H5.1 The full scalar field propagator (or 2-point function) in momentum space can be written as

$$
G(i\omega_n, \mathbf{k}) = \frac{1}{\omega_n^2 + \mathbf{k}^2 + m_B^2 + \Pi}.
$$
\n
$$
(*)
$$

which defines the function $\Pi(i\omega_n, \mathbf{k})$ (sometimes called self-energy).

(a) Consider φ^4 -theory in 3+1 dimensions,

$$
\mathcal{L}=\frac{1}{2}\partial_{\mu}\varphi\partial^{\mu}\varphi-\frac{1}{2}m_{B}^{2}\varphi^{2}-\frac{\lambda_{B}}{4}\varphi^{4}.
$$

In the path integral, expand G to order λ . Also expand $(*)$ to first order in Π . By comparing the two expansions you find an expression for Π valid at order λ .

- (b) Compute Π at leading order in the high-temperature expansion (which is of order T^2).
- (c) Insert your result for Π into $(*)$. Then $G(0,\mathbf{k})$ has a pole at $\mathbf{k}^2=-m_\text{th}^2$. What is the value of the so-called thermal mass $m_{\rm th}$?

(d) Compute the contribution from the Matsubara zero mode to the ideal gas pressure using the thermal mass instead of the particle mass m , and compare your result with the one from the infrared resummation.

Problem H5.2 Extend the above theory by adding a massless Dirac fermion ψ which couples to the scalar field via a Yukawa interaction with coupling constant g , i.e. add the term

$$
\mathcal{L} = \bar{\psi}(i\partial - g\varphi)\psi
$$

to the Lagrangian. Repeat the steps of problem 5.1 but now for the Yukawa interaction instead of the φ^4 interaction. Note that here the leading contribution to Π is order g^2 . Hint: For the Matsubara zero mode contribution to the pressure we need $k^0=0$, furthermore we need $|{\bf k}| \ll T$. Therefore you can put the external momentum k to zero.