Problem C2.1 The action of a free relativistic point particle with mass m and velocity \mathbf{v} is

$$S = -m \int dt \sqrt{1 - \mathbf{v}^2}$$

Compute the canonical momentum \mathbf{p} and the Hamiltonian $H(\mathbf{p}, \mathbf{x})$. Is H quadratic in \mathbf{p} ? How does version 1 of the corresponding path integral look like? Can one perform the path integral over momentum to obtain version 2 of the path integral?

Problem C2.2 Compute the entropy and the energy of an ideal massless Bose gas using the results of the lecture.

Problem H2.1 A free scalar field in a finite volume V is given by

$$\varphi(-i\tau, \mathbf{x}) = \sum_{\mathbf{k}} \frac{1}{\sqrt{2E_{\mathbf{k}}V}} \left(e^{-ikx} a_{\mathbf{k}} + e^{ikx} a_{\mathbf{k}}^{\dagger} \right),$$

with $kx \equiv k^0 x^0 - \mathbf{k} \cdot \mathbf{x}$, $k^0 = E_{\mathbf{k}} = \sqrt{\mathbf{k}^2 + m^2}$, and $x^0 = -i\tau$. The annihilation/creation operators fulfill the commutation relation

$$\left[a_{\mathbf{k}}, a_{\mathbf{q}}^{\dagger}\right] = \delta_{\mathbf{k}, \mathbf{q}}.$$

Use this free-field expansion to show that in the infinite-volume limit the two-point correlator is given by

$$\langle \varphi(-i\tau, \mathbf{x})\varphi(0)\rangle = T\sum_{n} \int \frac{d^{3}k}{(2\pi)^{3}} e^{-i\omega_{n}\tau + i\mathbf{k}\cdot\mathbf{x}} \frac{1}{\omega_{n}^{2} + \mathbf{k}^{2} + m^{2}}$$

Remember from the harmonic oscillator with occupation number n that $\langle n|a^{\dagger}a|n\rangle = n$ for annihilation/creation operators satisfying $[a, a^{\dagger}] = 1$.

Problem H2.2 Again consider the two-point function

$$\langle \varphi(-i\tau, \mathbf{x})\varphi(0) \rangle$$

but now without using the free-field expression for φ . Insert complete sets of energy-eigenstates $|n\rangle$ with $H|n\rangle = E_n|n\rangle$ to make the τ dependence explicit. Do these sums converge? What happens when τ turns negative?