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Problem 1.1 Consider an ideal, non-relativistic gas of bosons with mass m in a finite box of size L. Let µ
be the chemical potential associated with the particle number N .

(a) Use the known partition function to show that
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Which values for µ are allowed?

(b) Show that in the thermodynamic limit the number density n = N/V can be written as
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Assuming a fixed number density, show that upon decreasing the temperature, µ goes to zero already
at a finite temperature Tc. What happens when the temperature drops further below Tc?

(c) Go back to a finite volume. Show that the particle number of the zero mode k = 0 diverges as T → Tc.
Show that the first non-zero mode, k = (2π/L, 0, 0)T , and with it all higher modes acquire a finite
value. What does that imply for the number density when going to an infinite volume again?

Problem 1.2 Let ϕ be a real scalar field with the action
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with the Lagrangian (density)
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(a) Derive the equation of motion for ϕ from the principle of least action ‘by hand’ by (i) replacing
ϕ → ϕ + δϕ with infinitesmal δϕ = δϕ(x) in S and determine the resulting variation S → S + δS,
and then (ii) demanding δS = 0 for arbitrary δϕ(x).

(b) Re-derive the equation of motion from the Euler-Lagrange equation
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