5.4 Path integral for Direc field

Te found that

for fermions in QM = QFT in 0+1 dieneemons:

in tegral over Gransmann-valued paths

少(+), 中(+),

boundary couclihous: 4(t;)= 4i, \$\tau(t_g) = \tau_f\$

action: S= Jdt \$\forall (i\partial t - m) \psi

The analogous steps for a Dirac field gives

integral over Goassmann-valued paths

少(t,式), 平(t,式)

boundary couch hous: 4 (+;, ×) = 4:(x), Th(t+,x) = 4;(x)

action: $S = \int d^4x \, \overline{\psi} (i \partial - u) \psi$

Again defilie a generating functional $\Xi [\gamma, \overline{\gamma}] := \langle 0|T \text{ evep} \left(i \int d^4x \left[\overline{\gamma} + \overline{\psi} \gamma\right]\right) |0\rangle$ with c-number Grossmann field $\gamma(x)$, $\overline{\gamma}(x)$ such that $\langle \langle 0|T \left[\psi(x_1) \cdots \psi(x_n) \right] \psi(x_{n+1}) \cdots \psi(x_n) |0\rangle$ $= \left[\left(-i \frac{\delta}{\delta \eta(x_n)}\right) \cdots \left(-i \frac{\delta}{\delta \overline{\gamma}(x_n)}\right) \right] \Xi [\gamma, \overline{\gamma}] \int_{\gamma=\overline{\gamma}} = 0$

Again by slightly tilting the time contour one obtains part integral for 2:

 $Z[\eta,\overline{\eta}] = \frac{\int 2\overline{\psi} 2\psi \exp\left(i\int d^4x \left\{\overline{\psi}(i\partial_- m)\psi + \overline{\eta}\psi - \overline{\psi}\underline{\eta}\right\}\right)}{\int 2\overline{\psi} 2\psi \exp\left(i\int d^4x \overline{\psi}(i\partial_- m)\psi\right)}$

Complete Alie Aquar:

$$\int 2\overline{+} 2\psi \exp \left(i \int d^4x \left\{ \overline{\psi} (i \partial_{-} m) \psi + \overline{\psi} \psi + \overline{\psi} \gamma \right\} \right)$$

$$= \int 2\overline{\psi} 2\psi \exp \left(i \int d^4x \left\{ \left(\overline{\psi} + \overline{\gamma} \frac{1}{i \partial_{-} m} \right) (i \partial_{-} m) (\psi + \frac{i}{i \partial_{-} m} \gamma) - \overline{\gamma} \frac{1}{i \partial_{-} m} \gamma \right\} \right)$$

$$= eser \left(-i \int d^4x \overline{\gamma} \frac{1}{i \partial_{-} m} \gamma \right) \int 2\overline{\psi} 2\psi \exp \left(i \int d^4x \overline{\psi} (i \partial_{-} m) \psi \right)$$

with the Teynman propagator

or more precisely

2-point function:

(017 4 cx) 7 (x2) 10)

$$= \left(-\frac{\delta}{\delta \eta^{(x_2)}}\right) \left(-\frac{\delta}{\delta \bar{\eta}^{(x_1)}}\right) \left(-\frac{1}{\delta \bar{\eta}^{($$

LSZ for krunous

S-matrix element for 2 is 2 scattering of scalars: (\$\bar{p}_3 \bar{p}_4 15-11 \bar{p}_1 \bar{p}_2 \right) = (1) 4 line \frac{\frac{1}{1}}{1} (-pa^2 + m^2) \\
\$p_4 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2 \rightarrow \tau_1 \rightarrow \tau_2 \rightarrow \tau_2

· GR (- hr, - hz, hs, h4)

That, is the propagators of the enternal Cines are removed from the n-point function

This is also true for Difoc fearious, but there are adolphonal factors depending on their spin:

	operator in Go		factor in S- massix
in Stah	firmion (a)	4	u,(丸)
outstake	fermio	4	us (H)
un Nah	aun'fermion (b)	4	Or (h)
our-State	autifermon	Ψ	(K)

(See e.g. Tredmike 41)

5

6 Genge fields

6.1 Conomical formulation

electromagnetic field strength tensor Fru

AM: 4-vector postential, J= (f) 4-current

A her 4 components, but 3 only 2 photon polarizations.

S = Jd4x L' invariant unels gauge transformations

AM = AM + OMX

if the current is conserved, du It = 0.

gauge transform such that

A3 = 0 " axial gauge"

Canonical momenta: The DE

1 = 1 (di Ao + do A') contain no A° =>

TTo = 0 " constraint"

abo: 113 = 0

only 2 non-vanishing canonical momenta

 $T_i = \partial_0 A^i + \partial_i A_0$ (i=1,2)

NB: T: = = [(1 = 1, 2)

4.1

gaus' Caw: $\nabla \cdot \vec{E} = p \Rightarrow -\nabla \cdot \vec{\pi} + \partial_3 E_3 = p$ (*)

with $E_3 = -\partial_3 A_0$. This is a constraint for A^0 .

It can be solved by x^3 - chregration. Then A^0 (and E_3)

is fixed in terms of Π and p, taken at the Jame time.

Then we have 2 independent fields A!, A? and 2 canonical moments The, The.

 $\mathcal{L} = \frac{1}{1} \vec{\pi}^{2} + E_{3}^{2} - \vec{B}^{2} - A^{0} + \vec{J} \cdot \vec{A}$ $H = \int d^{3}x \left\{ \vec{\pi} \cdot \vec{A} - L \right\} = \int d^{3}x \left\{ \vec{\pi} \cdot (\vec{H} - \nabla A_{0}) - L \right\}$ $- \int d^{3}x \vec{\pi} \cdot \nabla A_{0} = \int d^{3}x A_{0} \nabla \cdot \vec{\pi} = \int d^{3}x A^{0} \left(\partial_{3} E_{2} - P \right)$ $= - \int d^{3}x \left(E_{3} \partial_{3} A^{0} + A^{0} P \right) = \int d^{3}x \left(E_{3}^{2} - A^{0} P \right)$ $H = \int d^{3}x \left\{ \frac{1}{2} \left[\vec{\pi}^{2} + E_{3}^{2} + \vec{B}^{2} \right] - \vec{J} \cdot \vec{A} \right\}$