I. FERMION PATH INTEGRATION - PHYSICS 571 - WINTER 2014

A. The Fermionic Harmonic Oscillator

The prototype for a fermion field is a 2-state system in quantum mechanics, with ground state $|0\rangle$ and excited state $|1\rangle$, which in QFT will correspond to a fermion state being unoccupied or occupied respectively. I will refer to this as the "fermionic harmonic oscillator" because we can write the Hamiltonian as

$$
\begin{equation*}
H=\frac{1}{2} m\left(b^{\dagger} b-b b^{\dagger}\right)=m\left(b^{\dagger} b-\frac{1}{2}\right), \tag{1}
\end{equation*}
$$

where b and b^{\dagger} are operators satisfying anti-commutation relations

$$
\begin{equation*}
\{b, b\}=\left\{b^{\dagger}, b^{\dagger}\right\}=0, \quad\left\{b^{\dagger}, b\right\}=1 \tag{2}
\end{equation*}
$$

where $\{A, B\} \equiv A B+B A$. The normalized eigenstates of H consist of the ground state $|0\rangle$ which is annihilated by b :

$$
\begin{equation*}
b|0\rangle=0 \tag{3}
\end{equation*}
$$

and the excited state

$$
\begin{equation*}
|1\rangle=b^{\dagger}|0\rangle, \tag{4}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
H|0\rangle=-\frac{1}{2} m|0\rangle, \quad H|1\rangle=+\frac{1}{2} m|1\rangle . \tag{5}
\end{equation*}
$$

B. Coherent States

It is convenient to introduce the "coherent states"

$$
\begin{equation*}
|\psi\rangle=e^{-\bar{\psi} \psi / 2}(|0\rangle+\psi|1\rangle), \quad\langle\bar{\psi}|=e^{-\bar{\psi} \psi / 2}(\langle 0|+\langle 1| \bar{\psi}) \tag{6}
\end{equation*}
$$

where the independent Grassmann numbers ψ and $\bar{\psi}$ which are anti-commuting:

$$
\begin{equation*}
\{\psi, \psi\}=\{\bar{\psi}, \psi\}=\{\bar{\psi}, \bar{\psi}\}=0 \tag{7}
\end{equation*}
$$

Note that these are numbers, not Hilbert space operators, and they commute with b and b^{\dagger}. Using the anti-commuting property of Grassmann numbers, it follows that

$$
\begin{align*}
& |\psi\rangle=\left(1-\frac{1}{2} \bar{\psi} \psi\right)|0\rangle+\psi|1\rangle, \\
& \langle\bar{\psi}|=\langle 0|\left(1-\frac{1}{2} \bar{\psi} \psi\right)+\langle 1| \bar{\psi} . \tag{8}
\end{align*}
$$

Using the nature of Grassmann numbers, you should be able to show that these states - called coherent states obey the following useful properties:

$$
\begin{align*}
b|\psi\rangle & =\psi|\psi\rangle \tag{9}\\
\langle\bar{\psi}| b^{\dagger} & =\langle\bar{\psi}| \bar{\psi} \tag{10}\\
\left\langle\bar{\psi}_{1} \mid \psi_{2}\right\rangle & =e^{-\frac{1}{2} \bar{\psi}_{1} \psi_{1}-\frac{1}{2} \bar{\psi}_{2} \psi_{2}+\bar{\psi}_{1} \psi_{2}} \tag{11}\\
\langle\bar{\psi} \mid \psi\rangle & =1 \tag{12}\\
|\psi\rangle\langle\bar{\psi}| & =(1-\bar{\psi} \psi)|0\rangle\langle 0|+\bar{\psi}|0\rangle\langle 1|+\psi|1\rangle\langle 0|-\bar{\psi} \psi|1\rangle\langle 1| . \tag{13}
\end{align*}
$$

C. Completeness and Grassmann integration

What remains to establish is a completeness relation. We define Grassmann integration so that

$$
\begin{equation*}
\int d \bar{\psi} d \psi|\psi\rangle\langle\bar{\psi}|=\mathbf{1}=|0\rangle\langle 0|+|1\rangle\langle 1| . \tag{14}
\end{equation*}
$$

From eq. (14) we see that integration is therefore defined to look like derivation:

$$
\begin{equation*}
\int d \bar{\psi} d \psi=\partial_{\bar{\psi}} \partial_{\psi} \tag{15}
\end{equation*}
$$

where derivatives with respect to a Grassmann number are themselves Grassmann...in particular, $\left\{\partial_{\bar{\psi}}, \partial_{\psi}\right\}=$ $\left\{\partial_{\psi}, \bar{\psi}\right\}=0$. You should check that this counterintuitive definition gives the correct result, that having $\partial_{\bar{\psi}} \partial_{\psi}$ act on the expression in eq. (13) gives the desired result on the left hand side of eq. (14).

Consider an general function

$$
\begin{equation*}
F(\psi)=f_{0}+\psi f_{1} \tag{16}
\end{equation*}
$$

If F is an ordinary number, then f_{0} is a number and f_{1} is a Grassmann number that anticommutes with ψ (I will assume this, but keep in mind that in supersymmetry you will occasionally encounter a Grassmann function F in which case f_{0} is Grassmann and f_{1} is an ordinary number). Note that with f_{1} being Grassmann, the order makes a difference: $\psi f_{1}=-f_{1} \psi$.
Then we have

$$
\begin{equation*}
\int d \psi F(\psi)=f_{1} \tag{17}
\end{equation*}
$$

For a function of both ψ and $\bar{\psi}$ we have

$$
\begin{equation*}
F(\psi, \bar{\psi}) \equiv f_{0}+\psi f_{1}+\bar{\psi} f_{2}+\bar{\psi} \psi f_{3}, \quad \int d \bar{\psi} d \psi F(\psi, \bar{\psi})=-f_{3} \tag{18}
\end{equation*}
$$

where f_{3} is an ordinary number if F is.

D. Grassmann Path Integration

Now suppose you want to construct

$$
\begin{equation*}
Z=\left\langle\bar{\psi}_{f}\right| e^{-i H\left(t_{f}-t_{i}\right)}\left|\psi_{i}\right\rangle, \quad \psi_{i} \equiv \psi\left(t_{i}\right), \quad \psi_{f} \equiv \psi\left(t_{f}\right) \tag{19}
\end{equation*}
$$

as a path integral. We break of the time interval $T=\left(t_{f}-t_{i}\right)$ into a lot of small pieces $T=N d t$ with

$$
\begin{equation*}
\psi\left(t_{i}+n d t\right) \equiv \psi_{n}, \quad \psi_{0}=\psi\left(t_{i}\right), \quad \psi_{N}=\psi\left(t_{f}\right) \tag{20}
\end{equation*}
$$

and similarly for $\bar{\psi}$, and then we use the completeness relation for coherent states in eq. (14) to write

$$
\begin{equation*}
Z=\int d \bar{\psi}_{1} d \psi_{1} \cdots d \bar{\psi}_{N-1} d \psi_{n-1}\left\langle\bar{\psi}_{N}\right| e^{-i H d t}\left|\psi_{N-1}\right\rangle\left\langle\bar{\psi}_{N-1}\right| e^{-i H d t}\left|\psi_{N-2}\right\rangle \cdots\left\langle\bar{\psi}_{1}\right| e^{-i H d t}\left|\psi_{0}\right\rangle \tag{21}
\end{equation*}
$$

A typical term in the integrand is of the form (dropping the zero-point energy)

$$
\begin{align*}
\left\langle\bar{\psi}_{n}\right| e^{-i H d t}\left|\psi_{n-1}\right\rangle & =\left\langle\bar{\psi}_{n}\right| e^{-i m b^{\dagger} b d t}\left|\psi_{n-1}\right\rangle \\
& =\left\langle\bar{\psi}_{n}\right| 1-i m b^{\dagger} b d t+O\left(d t^{2}\right)\left|\psi_{n-1}\right\rangle \\
& =\left(1-i m \bar{\psi}_{n} \psi_{n-1} d t+O\left(d t^{2}\right)\right)\left\langle\bar{\psi}_{n} \mid \psi_{n-1}\right\rangle \\
& =e^{\left(-i m \bar{\psi}_{n} \psi_{n-1} d t-\frac{1}{2} \bar{\psi}_{n} \psi_{n}-\frac{1}{2} \bar{\psi}_{n-1} \psi_{n-1}+\bar{\psi}_{n} \psi_{n-1}\right)}, \tag{22}
\end{align*}
$$

where in the last line follows from eq. (11).
Replacing the ψ_{n} by a continuous function of t the above expression may be written as

$$
\begin{equation*}
\left\langle\bar{\psi}_{n}\right| e^{-i H d t}\left|\psi_{n-1}\right\rangle=e^{i d t \bar{\psi}(t)\left(\frac{i}{2}{\overleftrightarrow{\partial_{t}}}^{-m)} \psi(t)+O\left(d t^{2}\right)\right.} \tag{23}
\end{equation*}
$$

Taking the product of all the terms in eq. (21) and taking the limit $d t \rightarrow 0$ yields the path integral

$$
\begin{equation*}
Z=\int D \bar{\psi} D \psi e^{i S}, \quad S=\int d t \bar{\psi}\left(\frac{i}{2} \overleftrightarrow{\partial}_{t}-m\right) \psi \tag{24}
\end{equation*}
$$

with boundary conditions $\psi\left(t_{i}\right)=\psi_{i}, \psi\left(t_{f}\right)=\psi_{f}$. If we take $\psi_{i}=\psi_{f}=0$ we can integrate by parts in S and obtain

$$
\begin{equation*}
S=\int d t \bar{\psi}\left(i \partial_{t}-m\right) \psi . \tag{25}
\end{equation*}
$$

Note that we can define correlation functions of the form

$$
\begin{equation*}
\left\langle T\left(\psi\left(t_{1}\right) \cdots \psi\left(t_{k}\right) \bar{\psi}\left(t_{k+1}\right) \cdots \bar{\psi}\left(t_{n}\right)\right\rangle=\frac{1}{Z} \int D \bar{\psi} D \psi e^{i S} \psi\left(t_{1}\right) \cdots \psi\left(t_{k}\right) \bar{\psi}\left(t_{k+1}\right) \cdots \bar{\psi}\left(t_{n}\right) .\right. \tag{26}
\end{equation*}
$$

The fact that this gives the time ordered correlation function is easy to see by going back to the discrete variables $\psi_{1} \ldots \psi_{N}$.

E. Generalization to Dirac fermions in four dimensions

The generalization of the fermionic path integral above to free Dirac fermions four dimensions is straight forward: We just replace the Grassmann numbers ψ and $\bar{\psi}$ by Grassmann 4 -component spinors, and replace S by the Dirac action,

$$
\begin{equation*}
Z=\int D \bar{\psi} D \psi e^{i S_{D}}, \quad S_{D}=\int d^{4} x \bar{\psi}(i \not \partial-m) \psi . \tag{27}
\end{equation*}
$$

F. Performing Grassmann Path Integrals

Suppose we have Grassmann field ψ and $\bar{\psi}$ and the Grassmann integral

$$
\begin{equation*}
Z=\int D \bar{\psi} D \psi e^{-\int \bar{\psi} \mathcal{D} \psi} \tag{28}
\end{equation*}
$$

where $C D$ is some hermitian differential operator with orthonormal eigenstates χ_{n} and eigenvalues λ_{n} :

$$
\begin{equation*}
\mathcal{D} \chi_{n}=\lambda_{n} \chi_{n} . \tag{29}
\end{equation*}
$$

Then we can expand ψ and $\bar{\psi}$ in terms of these eigenstates:

$$
\begin{equation*}
\psi(x)=\sum_{n} c_{n} \chi_{n}(x), \quad \bar{\psi}(x)=\sum_{n} \bar{c}_{n} \chi_{n}^{\dagger}(x), \tag{30}
\end{equation*}
$$

where the $\chi_{n}(x)$ are ordinary functions, while the c_{n} and \bar{c}_{n} are independent Grassmann numbers. Then the path integral becomes

$$
\begin{align*}
Z & =\int \prod_{n} d \bar{c}_{n} d c_{n} e^{-\sum_{m, n} \lambda_{n} \bar{c}_{m} c_{n} \int d^{4} x \chi_{m}^{\dagger}(x) \chi_{n}(x)} \\
& =\int \prod_{n} d \bar{c}_{n} d c_{n} e^{-\sum_{n} \lambda_{n} \bar{c}_{n} c_{n}} \\
& =\int \prod_{n} d \bar{c}_{n} d c_{n} \prod_{n}\left(1-\lambda_{n} \bar{c}_{n} c_{n}\right) \\
& =\prod_{n} \lambda_{n} \tag{31}
\end{align*}
$$

But this is nothing other than the determinant of the operator \mathcal{D}, so we have

$$
\begin{equation*}
Z=\int D \bar{\psi} D \psi e^{-\int \bar{\psi} \mathcal{D} \psi}=\operatorname{det} \mathcal{D} . \tag{32}
\end{equation*}
$$

Note the difference between this and gaussian path integration over bosonic variables ϕ and ϕ^{*} :

$$
\begin{equation*}
\int D \phi^{*} D \phi e^{-\int \phi^{*} \mathcal{D} \phi} \propto \frac{1}{\operatorname{det} \mathcal{D}} \tag{33}
\end{equation*}
$$

where an uninteresting overall normalization is neglected.
When thinking about fermionic path integrals it is important to remember that the canonical fields $\bar{\psi}$ and ψ obey nontrivial equal time commutation relations, while the path integral variables $\bar{\psi}$ and ψ are Grassmann fields, not operators, and all anticommute with each other:

$$
\begin{equation*}
\{\psi(x), \psi(y)\}=\{\bar{\psi}(x), \psi(y)\}=\{\psi(x), \bar{\psi}(y)\}=\{\bar{\psi}(x), \bar{\psi}(y)\}=0 \tag{34}
\end{equation*}
$$

G. Including sources

We can generalize the partition function for free Dirac fermions by adding Grassmann sources for the fermion field. Defining $\mathcal{D}=(i \not \partial-m)$ we have

$$
\begin{align*}
Z(\eta, \bar{\eta}) & =\int D \bar{\psi} D \psi e^{i \int d^{4} x \bar{\psi} \mathcal{D} \psi+\bar{\eta} \psi+\bar{\psi} \eta} \\
& =\int D \bar{\psi} D \psi e^{i \int d^{4} x\left(\bar{\psi} \psi+\bar{\eta} \mathcal{D}^{-1}\right) \mathcal{D}\left(\mathcal{D}^{-1} \eta+\psi\right)-\bar{\eta} \mathcal{D}^{-1} \eta} \\
& =e^{-i \int d^{4} x \bar{\eta} \mathcal{D}^{-1} \eta} \times Z(0,0) \tag{35}
\end{align*}
$$

where the last equality is obtained by shifting the dummy integration variables to $\bar{\psi}^{\prime}=\left(\bar{\psi}+\bar{\eta} \mathcal{D}^{-1}\right)$ and $\psi^{\prime}=$ $\left(\mathcal{D}^{-1} \eta+\psi\right)$.

It follows that correlation functions are given by

$$
\begin{equation*}
\left\langle T\left(\psi\left(x_{1}\right) \cdots \bar{\psi}\left(x_{k+1}\right) \cdots\right\rangle=\left.\frac{1}{Z(0,0)}\left[\left(-i \frac{\delta}{\delta \bar{\eta}\left(x_{1}\right)}\right) \cdots\left(-i \frac{\delta}{\delta \eta\left(x_{k+1}\right)}\right) \cdots\right] Z(\eta, \bar{\eta})\right|_{\eta=\bar{\eta}=0}\right. \tag{36}
\end{equation*}
$$

In particular, the propagator is given by

$$
\begin{equation*}
\left\langle T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right)\right\rangle=\frac{i}{\mathcal{D}}_{x_{1}, x_{2}} \tag{37}
\end{equation*}
$$

