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Lehmann, Symanzik and Zimmermann (LSZ) proved a theorem showing how to obtain the S-
matrix from time-ordered Green functions. Their result, the reduction formula, is fundamental to
practical calculations of scattering processes. A known problem is that the operators that they use
to create asymptotic states create much else besides the intended particles for a scattering process.
In the infinite-time limits appropriate to scattering, the extra contributions only disappear in matrix
elements with normalizable states, rather than in the created states themselves, i.e., the infinite-
time limits of the LSZ creation operators are weak limits. The extra particles that are created are
in a different region of space-time than the intended scattering process. To be able to work with
particle creation at non-asymptotic times, e.g., to give a transparent and fully deductive treatment
for scattering with long-lived unstable particles, it is necessary to have operators for which the
infinite-time limits are strong limits. In this paper, I give an improved method of constructing such
operators. I use them to give an improved systematic account of scattering theory in relativistic
quantum field theories, including a new proof of the reduction formula. Among the features of the
new treatment are explicit Feynman rules for the vertices corresponding to the creation operators,
both for the LSZ ones and for the new ones. With these I make explicit calculations to illustrate
the problems with the LSZ operators and their solution with the new operators. Not only do these
verify the existence of the extra particles created by the LSZ operators and indicate a physical
interpretation, but they also show that the extra components are so large that their contribution
to the norm of the state is ultra-violet divergent in renormalizable theories. Finally, I discuss the
relation of this work to the work of Haag and Ruelle on scattering theory.

I. INTRODUCTION

The reduction formula of Lehmann, Symanzik and
Zimmermann [1] (LSZ)1 is very important for applica-
tions of quantum field theory (QFT) to experiment be-
cause it shows how to compute S-matrix elements from
time-ordered Green functions, including the correct ex-
ternal line factors.

Unfortunately, there are some problems, as was real-
ized a long time ago — see the papers by Haag [4, 5], Ru-
elle [6], and Hepp [7]. The problems do not in fact impact
the validity of the reduction formula itself, or even the
validity of LSZ’s proof. Instead, the problems manifest
themselves when one tries extending the LSZ methods to
more general situations. As we will see, such cases oc-
cur quite dramatically when the operators used by LSZ
to create asymptotic particles are applied in experimen-
tally relevant situations at finite times instead of infinite
times.

More explicitly, suppose we are given a single-particle
positive-energy wave function2 f(x). Then LSZ define a

time-dependent operator a†f (t) that is intended to create
a single particle in the in-state or the out-state in the
limit that t→ −∞ or t→ +∞, with the particle’s state
corresponding to the wave function f . However, when
one of these operators acts on the vacuum, what is cre-
ated is a lot more than the intended particle; taking time

∗ jcc8@psu.edu
1 Other useful references for proofs following LSZ’s strategy are in

Refs. [2, 3]
2 See Sec. VII for a specification of what is meant here.

to infinity does not help. This will be illustrated in Sec.
IX C with the aid of explicit perturbative calculations.
Moreover, we will see that, the extra contributions are
not merely nonzero, but in a renormalizable QFT are
also generically ultra-violet (UV) divergent, as measured
by the norm of the state that is created.

In the restricted context of the matrix elements used to
obtain the S-matrix, a careful application of the infinite-
time limits, as in the LSZ paper, does remove the extra
contributions. This can be characterized [4, 6] by saying
that the limits used by LSZ are weak limits, but not
strong limits. (See App. A for characterization of these
concepts, together with summaries of methods by which
it can be determined which kind of limit is applicable in
particular cases.)

In contrast, for an operator A†f (t,∆t) that actually
does asymptotically create a single particle only, then
the strong limit exists. As indicated by the notation, it
will be useful to introduce an extra parameter ∆t that
is a range of time involved in defining the operator; its
inverse is essentially an uncertainty in energy. The oper-
ator creates a single particle in the limit3 ∆t → ∞. Its

3 At finite times A†f (t,∆t) does create extra contributions in ad-

dition to the intended single particle. The extra contributions
vanish in the limit that ∆t → ∞. Therefore they are small if ∆t
is large enough. The smallness of the extra contributions is what
can allow the application to unstable particles, etc. Notice that
to ensure that the operator creates one particle to a good ap-
proximation, it is ∆t that needs to be large, not t itself. That is
suitable for creating a particle in a chosen finite region of space-
time. It might be within an experimental apparatus instead of
being infinitely far away.
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application to creating particles in a scattering process
involves taking both t and ∆t to infinity in such a way
that ∆t/|t| → 0.

Such an operator allows one to make an adequate treat-
ment when the strict limits of infinite time are not taken.
Such would be the case for treating long-lived but unsta-
ble particles or for a fully deductive treatment of neutrino
scattering and oscillations.4 The extra particles created
by using the original LSZ operator instead of the new op-
erator would be detected in a suitably located detector.

Textbook treatments given for these situations typ-
ically start from the strict infinite-time formalism for
standard scattering. They then graft on something like
a semiclassical analysis of isolated free particles, with a
good dose of intuition and hand-waving.5

The primary purpose of the paper is to provide an im-
proved proof that overcomes the problems just described.

In the LSZ paper, the creation operator a†f (t) involves

just an integral over all space, with the field (and its
time derivative) being taken at one specific value of time
t. It is the use of integrals at fixed time that causes the
problems, essentially by a kind of application of an uncer-
tainty principle: A fixed time implies infinite uncertainty
in energy.

The main innovation applied in the present paper is

to find a good way of defining the operator A†f (t,∆t), by

averaging a†f (t) over a range of time. Many conceptual
subtleties then robustly disappear.

Related techniques were used by Haag and Ruelle in
their formulation of scattering theory [4, 6].6 But their
method was formulated somewhat differently, and in
a way that calculations using their operators difficult.
They focused heavily on mathematical aspects of the the-
ory as opposed to possible applications. The different
construction given in the present paper makes its much
easier to treat the asymptotics and allows a simplification
of the proof of the reduction formula. The new construc-
tion provides simple explicit formulas for the new opera-
tors both in coordinate space and momentum space. See
Sec. XIV for a comparison of the new method with the
Haag-Ruelle method.

It is important to emphasize that, as regards the LSZ
reduction formula itself, the issues just summarized con-
cern its proof. In the case that we use a theory in which
all particles are massive and that we treat only scatter-
ing of exactly stable particles, the LSZ reduction formula
remains correct and unchanged.

4 See Refs. [8, 9] a systematic account that includes an analysis of
the confusion that sometimes results when textbook results on
scattering theory are applied to neutrino oscillations, together
with relevant references. It would be interesting to combine the
account given there with the methods of the present paper.

5 See also the comments by Coleman [10, 11] on the hand-waving
used in the usual treatments of scattering.

6 See also Hepp’s account [7] of their method, as well as the recent
account by Duncan [2].

One advantage of the new formulation is that once

the new definition of A†f (t,∆t) has been provided, then
the derivation of the S-matrix is essentially a straight-
forward calculation. The bulk of this paper primarily
concerns motivation, examples, and derivations of the
prerequisites for performing the calculations. As already
mentioned, another advantage of the new methods are
that they allow straightforward extensions to situations
at non-asymptotic times, e.g., to treat unstable parti-
cles. Boyanovsky [12] has recently treated the space-time
properties of the decay of unstable particles, and encoun-
tered complications that are closely related to the issues
treated here. In particular, he provides an independent
calculation of the ultra-violet divergence in the state cre-
ated by an LSZ operator.

Another possible extension is to scattering with mass-
less particles. As is well-known, the postulates of stan-
dard scattering theory fail in theories with massless par-
ticles. A fully systematic treatment requires extensions
or modifications to the versions of scattering theory that
are valid for massive particles. There is recent interest,
e.g., [13, 14], in finding better treatments for the massless
case.7 Off-shell or finite-time Green functions do exist in
such theories. Therefore what is in question is the nature
of the infinite-time limits and their relation to physically
implementable scattering. A strategy for defining good
finite-time approximations to the creation of single par-
ticles could be very useful to finding a better formulation
of the infinite-time limits with massless particles. The
formalism presented in this paper is suitable for use in
perturbative calculational examples that can be used to
test the formulation of general abstract theorems.

II. OVERALL VIEW: STARTING POINT,
MOTIVATIONS, STRATEGY

A. Aims

A primary technical aim is the determination of the S-
matrix in a quantum field theory (QFT) from its Green
functions.8. A related aim is to construct definitions of
operators that can be applied to the vacuum state to
construct in and out states, which are states of well-
separated individual particles. The operators give a con-
struction of the state space of the theory in terms of field
operators applied to the vacuum, with parameterizations
of the states that are suitable for experimentally relevant
scattering processes.

We assume that a QFT exists, as specified by its set of
fields and its Lagrangian density, that it obeys the stan-
dard properties of QFTs, and that the task is to compute

7 See also Ref. [15] for further information about the S-matrix in
massless integrable theories.

8 I.e., vacuum expectation values of time-ordered products of field
operators.
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S-matrix elements from the Green functions. In doing
so, one also verifies many of the properties of scattering
processes that underlie the definition and use of the S-
matrix. Motivations for the emphasis on Green functions
will be given next.

B. Position with respect to logical framework for
QFT

Underlying those practical aims is a deeper issue. This
concerns what it means to solve a particular QFT, and
what exactly is the logic by which the results are derived
and checked.

A QFT is specified by listing a set of basic fields, which
are operator valued functions of space-time (strictly
speaking, operator-valued distributions), and by pos-
tulating certain of their properties, notably equal-time
canonical commutation relations (ETCCRs) and equa-
tions of motion. Normally these are determined from
a formula for a Lagrangian density in terms of the ba-
sic fields. A solution entails determining what the state
space is and how the operators act on it, after which
one can compute quantities of experimental interest. Of
course, after solving for the state space and the operators
by deductions from the initial postulates that specify the
theory, it is useful to verify self-consistency by showing
that the constructed operators do obey the postulated
properties.9

In contrast, the situation is rather different in the case
of the non-relativistic quantum mechanics of a finite num-
ber of particles. In the first formulation of quantum me-
chanics, i.e., Heisenberg’s matrix mechanics, the above
procedure was followed to determine the matrices that
implement the position and momentum operators. See
the paper by Born and Jordan [16] for the case of the
harmonic oscillator. In normal current terminology, we
would say that the matrices consist of the matrix el-
ements of the corresponding operators between energy
eigenstates.

It was quickly realized, at least in effect, that in these
relatively simple theories there is a unique representa-
tion of the ETCCRs, up to unitary equivalence. Thus
the state space and how the operators act on it are
determined uniquely. States can then be realized as
Schrödinger wave functions. That is all independent of
the details of the Hamiltonian, e.g., as to what the po-
tential is. Predictions of the theory can be determined
by solving the Schrödinger equation for time dependence
of the state or for energy eigenstates, etc.

In QFT, the situation is radically different. Because
of the infinite number of degrees of freedom, there is no

9 The complications entailed by ultra-violet divergences need not
concern us here. They require an implementation of renormaliza-
tion, thereby entailing modification of the underlying postulates
in order to get self-consistent results.

longer a unique representation of the ETCCRs. More-
over, it is found that the different representations get
used. Calculations show pathologies and inconsistencies
— e.g., [17, 18] — if one assumes that the state space of
an interacting theory is the same as that of a free theory
and that the operators at one fixed time are the same
in both theories, as is done to define the interaction pic-
ture. Moreover, Haag’s theorem [2, 19, 20] guarantees
that this is not just a difficulty in particular examples,
but a general property of relativistic QFTs.

One way of stating this is that the Hilbert space of
states for an interacting theory is orthogonal to that
for a corresponding free theory. However, the Hilbert
spaces for the free and interacting theories are isomor-
phic, so one could alternatively arrange things such that
the Hilbert spaces are the same; but in that case, Haag’s
theorem shows that the free and interacting fields cannot
be related by a unitary transformation, contrary to what
happens in the widely used interaction picture.

These results considerably complicate the derivation
of useful consequences from a given QFT. Solving the
theory requires, implicitly or explicitly, a determination
of the state space and the action of the field opera-
tors on it. The vast majority of work on making pre-
dictions effectively evades the issue of what the states
and operators are. Perturbative calculations using Feyn-
man graphs give only matrix elements. Non-perturbative
calculations using Monte-Carlo lattice methods provide
an implementation of the functional integral of a QFT,
and have as their immediate target time-ordered Green
functions continued to Euclidean time; thus they give
vacuum-expectation values of certain operators.

Nevertheless, underlying any derivation of the methods
from the foundational postulates of a QFT is an assump-
tion that there are operators acting on the state space.

A useful way of handling the issues is to make the
Green functions then primary target of calculations, such
as in Refs. [10, 11, 21, 22]. In perturbation theory, the
Green functions can be obtained from the Gell-Mann-
Low formula. This allows the calculation10 of Green func-
tions in the full theory from certain matrix elements in
the free theory. The formula can be derived from the
functional integral, but it is often also derived from a use
of the interaction picture. Normally Haag’s theorem pre-
vents the consistent use of the interaction picture. But
in deriving the Gell-Mann-Low formula, the derivation
using the interaction picture can be first applied to a reg-
ulated theory with a finite number of degrees of freedom.
A projection onto the exact ground state can be made

10 Note that the straight application of perturbation theory is of-
ten supplemented by many kinds of “resummation” methods to
extend calculations beyond where strict fixed-order perturbation
theory applies. In addition, in QCD the operator product ex-
pansion and more general kinds of factorization are used to allow
certain kinds of predictions to be made from perturbative calcu-
lations even in the presence of strong non-perturbative phenom-
ena.
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with the use of the evolution operator at a time that is
somewhat rotated towards imaginary values [23]. Then
the regulators can be removed to give a continuum the-
ory in an infinite volume of space, with the application of
any necessary renormalization. In a correct derivation,
the numerator and denominator of the Gell-Mann-Low
formula both contain a factor |〈0|0; free〉|2, the squared
overlap of the vacuum states in the interacting and free
theories. Haag’s theorem manifests itself in this over-
lap going to zero when the infinite volume limit is taken.
But since the factor cancels between numerator and de-
nominator, the final results for the Green function are
valid and well-behaved in the limit that the regulators
are removed. Even though the operators and states have
rather singular properties as the regulator is removed,
the Green functions have smooth limits.

The Green functions obey equations of motion that
encode both the equations of motion for the fields and
their (anti)commutation relations on a “surface of quan-
tization”. Since it is readily proved that the perturbative
expansion of Green functions obeys these equations, we
know that at least the perturbative solution for Green
functions exists independently of any qualms one might
have about the adequacy of particular textbook deriva-
tions from first principles, e.g., concerning the existence
of the functional-integral representation of Minkowski-
space Green functions, or the asymptotic limits used in
applying the interaction picture.

An approach via Green functions recognizes that the
particle content and scattering processes arise as emer-
gent phenomena from the solution of a QFT. The parti-
cle concept in interacting relativistic QFTs is essentially
identical to the quasi-particle concept [24, Sec. 5.7] in
condensed matter physics, certainly if one uses the word
“particle” to refer not only to strictly stable particles
but also to unstable and confined particles. The primary
practical differences in condensed matter physics are that
there is an obvious preferred rest frame, and that the
background medium is at non-zero temperature, thereby
giving rise to notable dissipative effects.

Then the project initiated by LSZ of obtaining the S-
matrix (and in fact other matrix elements of time-ordered
operators) is in effect a determination of the state space of
the theory in a useful basis and of how the field operators
are implemented in that basis. (In fact, there are two
useful sets of basis states, one for incoming states in a
scattering process and one for outgoing states.)

Hence the overall logic is to start with the postulates
specifying a particular QFT. From them one deduces
methods for calculating Green functions, with care taken
to avoid invalidation of the derivations by Haag’s the-
ory. Finally one constructs the scattering states, and the
other consequences of the theory from the Green func-
tions. The LSZ reduction formula is the core tool to get
from the off-shell Green functions to S-matrix elements
and to matrix elements of any operator.

In contrast to the Green function route, many books
— e.g., [25] — take the S-matrix as primary. Such an

approach can be useful, e.g., [10, 11], to gain initial in-
sight from low-order perturbation theory about elemen-
tary experimental implications of a given QFT. But in
a complete treatment, use of the S-matrix as primary is
problematic. In its most natural form, such a treatment
assumes that the spectra of the free and interacting the-
ories are the same (e.g., p. 110 of [25]) and hence that
the particle types are in one-to-one correspondence with
the fields. But such an assumption is generally very in-
correct. For example, in the Standard Model, the only
elementary fields that correspond to particles in the strict
sense of scattering theory are those for the photon, elec-
tron, and neutrinos. The particles, or quasiparticles, that
correspond to the other fields are either unstable (e.g.,
muon), or confined (e.g., quarks), or both. On the other
hand, there is a large collection of stable bound states
(proton, and many nuclei, atoms and molecules) that do
not correspond to the elementary fields.

Moreover, in theories with massless particles, the stan-
dard theory of scattering and the S-matrix needs modifi-
cation, as manifested by the existence of infra-red diver-
gences in calculations of the S-matrix and cross sections
by standard methods. In contrast, the off-shell Green
functions do not have such problems. So it is again use-
ful to separate the issue of solving the theory, as mani-
fested in the Green functions, from that of determining
properties of scattering.

Furthermore, treatments that take the S-matrix as pri-
mary typically use the interaction picture in a way that
runs badly afoul of Haag’s theorem. For example, the
treatment in Ref. [25] starts from an assertion, (3.1.12)
and (3.1.13), of the large-time asymptotics of interaction-
picture states. The assertion is intended to capture
in mathematical form the intuitive notion of states ap-
proaching states of separated particles. But Haag’s the-
orem ensures that the asserted asymptotic properties are
simply wrong, and in a sense infinitely wrong. The in-
correctness of the stated properties is readily verified by
low order perturbative calculations, as was well-known in
the early 1950s, e.g., [17, 18].

These direct derivations of the S-matrix can be re-
garded as constructing a perturbative solution of a the-
ory on the basis of certain postulates about its properties.
Once that solution has been constructed, it can be inves-
tigated whether the constructed solution self-consistently
has the properties attributed to the solution. In this case,
it is readily seen from perturbative calculations that the
solution does not have these properties. A critical ques-
tion is whether the final answer for the perturbative solu-
tion is correct despite the false hypotheses used to derive
it or whether the answer itself is wrong. In this case it
is only the hypotheses that are wrong, and the solution
can be derived by better methods.
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C. Structure of presentation

The overall structure of the presentation and deriva-
tion in this paper is summarized by the following items:

1. In Sec. IV a review is given of the formulation of
scattering theory in terms of Fock-space structures
for the in- and out-states. This is a framework
that is strongly motivated by an examination of
what happens in scattering processes and in non-
relativistic quantum mechanics [3, 26]. From a log-
ical point of view, it may be best to regard the
formalism as a conjecture, to be a target of and
then verified by subsequent derivations.

2. Then there is made an examination of the asymp-
totics of Green functions in coordinate space, for
large positive and negative times, together with the
relation to properties of the Green functions in mo-
mentum space, notably the poles in external lines.
This motivates which properties of Green functions
need to be examined to derive the S-matrix.

3. An essential part of the specification of in- and
out-states concerns wave functions for the center-
of-mass motion of each of the asymptotic parti-
cles. These are used in both momentum and co-
ordinate space. The coordinate-space wave func-
tions are simply positive energy solutions of the
Klein-Gordon equation. In Sec. VII an account of
properties of these wave functions is given, since
these properties will be used in essential ways in
the derivation of the reduction formula. The mate-
rial is by no means new, but it is not always found
in standard textbooks, so it is useful to provide a
systematic exposition here.

4. In Sec. VIII, a statement of the reduction formula
is given, an improved derivation of which is the aim
of later sections.

5. In Sec. IX it is shown how to construct creation op-
erators for particles in the in- and out-states, such
that the necessary limits of infinite time are valid as
strong limits, rather than merely weak limits. As a
motivation for the definitions, the LSZ versions of
the operators are stated, and their deficiencies are
demonstrated with the aid of explicit perturbative
calculations. The structure of the definition of the
new creation operators will be such as to trivially
avoid the problems, as we will see after the proof
of the reduction formula.

Some elementary properties of the operators are
obtained in Sec. X.

6. In Sec. XI, the new derivation of the reduction for-
mula is made. The derivation starts from the vac-
uum matrix elements of products the new annihila-
tion and creation operators, and then analyzes the
relevant limits of large times.

7. In Sec. XII, verification of important properties
of the new annihilation and creation operators is
made, including that the infinite-time limits are
strong limits.

8. Finally, some indications of possible generalizations
are summarized in Sec. XIII, and a comparison with
the Haag-Ruelle method is given in Sec. XIV.

III. NOTATIONS AND CONVENTIONS

All the fields are in the Heisenberg picture, so that
the states are time-independent. If renormalization needs
to be considered, then the fields are taken to be renor-
malized fields; for these, the time-ordered Green func-
tions are finite. The space-time metric has the signature
+−−−.

In expanding quantities like fields in integrals over
modes, I use the Lorentz invariant form of integral with
the same convention and notation as Itzykson and Zu-
ber’s book [27]. Thus a free Klein-Gordon field obeys

φfree(t,x) =

∫
d3k

(2π)3 2Ek
×

×
[
ak,freee

−iEkt+ik·x + a†k,freee
iEkt−ik·x

]
, (1)

where Ek =
√
k2 +m2, m is the mass of the particle,

and the commutators of the annihilation and creation
operators are

[ak,free, a
†
l,free] = 2Ek (2π)3 δ(3)(k − l), (2a)

[ak,free, al,free] = [a†k,free, a
†
l,free] = 0. (2b)

Correspondingly, the normalization condition for single-

particle momentum eigenstates |k〉 = a†k,free|0〉 is

〈k|l〉 = 2Ek (2π)3 δ(3)(k − l). (3)

Following Itzykson and Zuber, I define a notation d̃k
by ∫

d̃k . . .
def
=

∫
d3k

2Ek(2π)3
. . .

=

∫
d4k

(2π)4
2πδ(k2 −m2) θ(k0) . . . . (4)

Then we can write

φfree(x) =

∫
d̃k
[
ak,freee

−ik·x + a†k,freee
ik·x
]
. (5)

I use the standard convention that a 4-vector like x is
notated in italics, while its spatial part is in boldface: x.

Note that many authors use different conventions for
the momentum eigenstates and wave functions. Corre-
spondingly they have slightly different integrals in their
versions of Eqs. (1)–(5) and in later equations.
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We will make much use of time-ordered Green func-
tions of the quantum field(s) of a theory. When there
is one scalar field, which is the only case we will treat
explicitly, we use the notation

GN (x1, . . . , xN )
def
= 〈0|T

N∏
j=1

φ(xj)|0〉. (6)

Its Fourier transform is defined by

G̃N (k1, . . . , kN )
def
=

∫
d4x1 . . . d

4xN ×

× e−ik1·x1−···−ikN ·xN GN (x1, . . . , xN ), (7)

with the convention that the kj are treated as momenta
flowing into the Green function.

IV. SCATTERING FORMALISM

In this section, I review the formalism of in- and out-
states that is used to formulate scattering theory in QFT.
Although the material is more or less standard, it is use-
ful to present it here, so that the necessary background
and motivation for the reduction formula are given. It
is also useful to organize the presentation to show cer-
tain differences in relativistic QFT compared with the
situation in non-relativistic quantum mechanics.

The essential point is to provide a quantum-mechanical
formulation of the intuitive idea of scattering, to do this
in Heisenberg picture, and to do it in such a way as to be
immune to issues such as those associated with Haag’s
theorem and the non-existence of the interaction picture
in QFT. Later sections will be concerned with relating
the results to properties of operators and Green func-
tions. When we prove the reduction formula, we are,
among other things, effectively verifying that the formal-
ism is indeed appropriate.

We are familiar with scattering processes, where at
asymptotically large negative times a system’s state con-
sists of two incoming free particles each moving classi-
cally. The particles scatter in some essentially finite re-
gion of space and time, and then at asymptotically large
positive times, the state is a linear combination of various
states consisting of outgoing free particles propagating
classically. Experimental apparatus makes a measure-
ment of the final state, with approximate localization of
the detected outgoing particles in both space-time and
momentum. In normal applications of QFT we only ex-
amine the momenta of the incoming and outgoing par-
ticles, and present calculational results in terms of the
S-matrix (commonly in perturbative approximations).

A. Scattering in the Schrödinger formulation of
non-relativistic quantum mechanics

We first examine how the intuitive ideas about scatter-
ing are translated into quantum-mechanical form for sys-

tems of a finite number of non-relativistic particles with
interactions mediated by potentials. The results can be
formalized in terms of Schrödinger wave functions. Es-
sential simplifications compared with QFT are:

• Haag’s theorem does not apply, so that the state
space and the action of operators on it can be spec-
ified independently of the interaction. Schrödinger
wave functions are effectively an expansion of states
in terms of eigenstates of the position opera-
tors. Thus for a single particle we can write its
Schrödinger picture state as

|ψ, t〉 =

∫
d3a |a〉ψ(a, t), (8)

where |a〉 is an eigenstate of the position operators
with eigenvalues a, and with the normalization con-
dition

〈a|b〉 = δ(3)(a− b). (9)

Observe that the state |a〉 can be considered as hav-
ing the wave function fa(x) = δ(3)(x − a). This
is a distribution but not an ordinary function of
position. So any valid use has to be considered
as having an implicit or explicit integral with a
smooth test function, as in Eq. (8). Effectively, one
can treat |a〉 as a state-valued distribution, i.e., a
mapping from smooth functions to states. (Simi-
lar conceptual issues will apply when we work with
momentum eigenstates in QFT.)

• Asymptotically when particles are separated by
much more than the range of the potential, their
propagation is simply that of free particles: the
action of the potential operator on the state goes
to zero. In contrast, in an interacting QFT, one
can never turn off the interactions inside a parti-
cle. Relative to a corresponding free theory, even a
single particle in a QFT can be thought of as con-
sisting of a complicated linear combination of states
in the free field theory. Moreover, Haag’s theorem
guarantees (in the relativistic case) that these lin-
ear combinations are badly divergent. So effectively
the free and interacting theories use different state
spaces, which are dynamically determined. Hence
expressing the true single particle states in terms
of free-particle states is a manner of speaking, only
suggestive of the true situation.

The simplest case is of one particle in an external po-
tential that falls off rapidly enough at large distance, and
that has no bound states. The Hamiltonian is

H =
p̂2

2m
+ V (x̂). (10)

Here, to avoid confusion between operators and numeric-
valued variables of the same name, I have labeled QM
operators with a hat.
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Scattering is implemented by a wave function ψ(x, t)
that solves the time-dependent Schrödinger equation. As
t → −∞, ψ(x, t) approaches the wave function for a
freely propagating particle:

ψ(x, t)
t→−∞→

∫
d3p

(2π)3
ψ̃in(p) e−iEpt+ip·x, (11)

where Ep = p2/(2m) and ψ̃in(p) is a momentum-space
wave function narrowly peaked around some value of mo-
mentum.11 At large positive times, the state has a similar
expansion, but with different coefficients:

ψ(x, t)
t→+∞→

∫
d3p

(2π)3
ψ̃out(p) e−iEpt+ip·x. (12)

B. Basis in- and out-states in elementary quantum
mechanics

To obtain a formulation in Heisenberg picture, we use
two sets of eigenfunctions of the Hamiltonian with certain
boundary conditions at spatial infinity. These give what
we will call the in- and out-basis functions.

For the wave functions φp; in(x) for the in-basis we
write

φp; in(x) = eip·x + gp; in(x), (13)

with a corresponding state-vector notated as |p; in〉. It
is an eigenfunction of the Hamiltonian,

H|p; in〉 = Ep|p; in〉, (14)

that obeys the boundary condition that at large x, the
scattered wave gp; in(x) has only an outgoing part at large
|x|, i.e.,

gp; in(x)
|x|→∞→ ei|p||x|

|x| fp; in(θ, φ), (15)

with no incoming term. That is, there is no term
with x dependence of the form e−i|p||x|/|x|. The fac-
tor fp; in(θ, φ) is a function of the polar angle of x; it is
a result of the solution.

Thus at large x, the function φp; in(x) is a combination
of a plane wave and an outgoing scattered wave:

φp; in(x) = eip·x +
ei|p||x|

|x| fp; in(θ, φ) +O(1/x2). (16)

11 More general wave functions can be considered, but to corre-
spond to the natural notion of scattering, wave packet states
with momentum-space wave functions peaked around some par-
ticular momentum are appropriate. In any case, more general
states can be made by the taking of linear combinations.

The out-basis functions are defined similarly, except
that the scattered wave has only an incoming part:

φp; out(x) = eip·x+
e−i|p||x|

|x| fp; out(θ, φ)+O(1/x2). (17)

The two solutions can be related by a time-reversal trans-
formation.

Then a general solution of the time-dependent
Schrödinger equation is of the form

ψ(x, t) =

∫
d3p

(2π)3
ψ̃in(p) e−iEpt φp; in(x), (18)

i.e.,

|ψ; t〉 =

∫
d3p

(2π)3
|p; in〉 ψ̃in(p) e−iEpt. (19)

A stationary-phase argument can be used to show that
at large negative times, only the eip·x term in Eq. (16)
contributes. The contribution of the scattered wave is
strongly suppressed. Then the wave function ψ(x, t)
obeys the condition of a free incoming particle, as in Eq.
(11). At large positive time, the scattered wave also con-
tributes.

A reversed set of conditions applies to an expansion in
the out-basis states.

The Heisenberg-picture state is defined to be the
Schrödinger-picture state at time 0. Thus we can ex-
pand the Heisenberg state in terms of either set of basis
states:

|ψ〉H =

∫
d3p

(2π)3
|p; in〉 ψ̃in(p) (20a)

=

∫
d3p

(2π)3
|p; out〉 ψ̃out(p). (20b)

We now show that the inner product of the basis states
of the same type has the standard normalization:

〈p; in|q; in〉 = (2π)3δ(3)(p− q) = 〈p; out|q; out〉. (21)

(Since we are in a non-relativistic situation, we omit the
2Ep factor that we use in the relativistic case.) The
derivation is by considering the inner product 〈ψ1; t|ψ2; t〉
of two states of the form given in Eq. (18). Because time-
evolution is unitary, the inner product is independent of
t. From the expansion in the in-basis states we have

〈ψ1; t|ψ2; t〉 =

∫
d3p

(2π)3

∫
d3q

(2π)3
×

× ψ̃∗1; in(p)ψ̃2; in(q) 〈p; in|q; in〉. (22)

But because of the time-independence of the inner prod-
uct, we can also compute in the limit of t → −∞, when
we can replace the wave functions by plane waves, as
at Eq. (11), and then we use the usual inner product of
plane waves to give

〈ψ1;−∞|ψ2;−∞〉 =

∫
d3p

(2π)3
ψ̃∗1; in(p)ψ̃2; in(p). (23)
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A similar derivation applies to the expansion in out-basis
states. Hence the scattering solutions obey (21), and this
normalization follows directly from the normalization of
the plane-wave part in (13).

Observe that the inner product (21) has to be in-
terpreted in a distributional sense, i.e., integrated with
(smooth) test function(s). This is evidenced by the pres-
ence of a delta-function. Trying to calculate the inner

product directly, by an integral over x of φq; in(x)φp; in(x)
is prevented by the lack of convergence of the integral.

C. The S-matrix in elementary quantum mechanics

The S-matrix can be defined as a relation between the
expansions in the 2 sets of basis functions given in (20).
Let us work in the Heisenberg picture. We have

|ψ〉H =

∫
d3p

(2π)3
|p; in〉 ψ̃in(p)

=

∫
d3p

(2π)3

d3k

(2π)3
|k; out〉 〈k; out|p; in〉 ψ̃in(p).

(24)

Then the S-matrix could be defined by

Sk,p = 〈k; out|p; in〉,=
∫

d3xφ∗k; out(x)φp; in(x). (25)

Then the two sets of expansion coefficients are related by

ψ̃out(k) =

∫
d3p

(2π)3
Sk,p ψ̃in(p). (26)

As with many other formulas involving basis states la-
beled by momenta, the definition (25) is to be interpreted
distributionally, i.e., when integrated with smooth test
functions. If nothing else the x integral in (25) would
otherwise diverge. So we could better define the S-matrix
by Eq. (26), as a relation between expansion coefficients;
effectively this will be the definition we use in QFT,
thereby avoiding a definition directly in terms of basis
states.

In working with the S-matrix, it is convenient to ex-
tract all the delta functions, i.e., to make explicit the
intrinsically distributional part, and thus to write

Sk,p = (2π)3δ(3)(k − p) + 2πδ(Ek − Ep)A(k,p). (27)

The amplitude A(k,p) is an ordinary function of its ar-
guments (but restricted to the case that the energies of
the two momenta are equal). This amplitude is a nat-
ural target of Feynman-graph calculations, especially in
the generalization of these results to QFT.

It can be shown that it is related to the function f that
is the coefficient of the 1/x term in (16) by

A(k,p) =
−2πi

m
fp; in(θk, φk). (28)

A fundamental derivation from first principles can be
made by computing the asymptotics of ψ(x, t) for t →
±∞; this is done starting from the expansion in |p; in〉,
using stationary phase methods, and then matching onto
a plane-wave expansion as t → ∞. That expansion has
coefficients ψ̃out(k). Somewhat shorter derivations can
be made with the aid of insights as to what happens in
the limit that the expansion function ψ̃in(p) approaches
a delta function, so that the t → −∞ wave function ap-
proaches a plane wave cut off at very large distances. An
appropriate function would be

ψ̃in(p) =

(
4π

∆p2

)3/2

e−(p−p0)2/∆p2 , (29)

with ∆p→ 0.

D. Generalization

When we go to relativistic QFT, we will need the mul-
tiparticle case, where we will write basis states with ar-
bitrarily many particles as

|p1, . . . ,pn; in〉, (30a)

|q1, . . . , qn; out〉, (30b)

often with the natural generalizations to allow labels for
particle type and for spin states. However, unlike the case
of Schrödinger wave-function theory, we will not have a
direct definition12 of these objects, e.g., as wave func-
tions that are eigenfunctions of the Hamiltonian subject
to certain boundary conditions. So we will formulate the
necessary concepts in terms of normalizable states with
specified asymptotic particle content, and arrange that
further derivations use only normalizable states as start-
ing points.

In a QFT we construct normalizable states by applying
products of field operators to the vacuum and integrat-
ing with smooth functions of the positions of the field
operators. The taking of linear combinations then gives
general states. A main aim of this paper is to provide
a construction of this kind for a state that has a spec-
ified momentum content for asymptotic incoming parti-
cles, and similarly for outgoing particles.

This implies that it is useful to formulate the meth-
ods in terms of normalizable states only, i.e., states gen-
uinely in the Hilbert space of the theory, and only after

12 Many textbooks by reputable authors appear to provide con-
structions of the basis states with the aid of the interaction pic-
ture and manipulations inspired by those that done in elemen-
tary quantum mechanics. However, Haag’s theorem guarantees
that the interaction picture does not exist — cf. Streater and
Wightman’s [20] ironic restatement of Haag’s theorem as “The
interaction picture exists if and only if there is no interaction”.
So any direct construction of scattering states and the S-matrix
by interaction-picture methods must be regarded as highly sus-
pect, at the least.
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that to provide a formulation involving the momentum-
dependent basis states. That is done by the natural gen-
eralization of the construction given above (29). To im-
plement the idea of states with specified incoming par-
ticle content, we will first specify the relevant properties
of a Fock space decomposition of the state space. This
simply matches the corresponding structures in wave-
function theory. Later sections will provide constructions
of states that implement the Fock space. The physical
interpretation as free incoming particles of definite mo-
mentum content will be determined by the localization
of the particles as determined by locations of the fields
used to construct the states, and by a computation of
the effect of applying the momentum operator on the
states. In Sec. XI B, we will find that indeed the particles
propagate asymptotically along the appropriate classical
trajectories and have the expected momenta.

The states for which we actually give a construction
have product wave functions. This will be sufficient,
because the taking of linear combinations gives general
states in the Hilbert space, i.e., the states with product
wave functions form a complete set in the sense used in
Hilbert space.

After the construction of states with specified content
in the initial or final states, various quantities of interest
can be computed from the Green functions of the theory;
these include S-matrix elements, and matrix elements of
operators between specified states.

In Schrödinger wave-function theory, basis states for
incoming particles, as in (30), are defined to be the sum
of a multidimensional plane wave and what is asymptot-
ically an out-going wave. Whenever a bound state is one
of the asymptotic particles, then the proper generaliza-
tion of the plane wave idea is that there is a plane wave
factor for the center-of-mass coordinate of the bound
state, and this is multiplied by the wave function de-
pending on the relative coordinates of the elementary
constituents.

We now abstract from the above discussion the Fock-
space formalism that applies in QFT to states with spec-
ified asymptotic particle content. For this presentation
following, we assume that there is one type of particle,
and that it is a boson of nonzero mass m. Generaliza-
tions to multiple types of particle, including fermions,
are elementary, and can be worked out from material in
standard textbooks.

Given the basis in-states (30a), a general normalizable
state is specified by an infinite array of momentum-space
wave functions, f = (f0, f1, . . .), and has the form

|f ; in〉 =

∞∑
n=0

1

n!

∫ n∏
j=1

d̃pj fn(p1, . . . ,pn) |p1, . . . ,pn; in〉.

(31)
The wave functions are assumed to be symmetric in their
arguments, and the 1/n! factor is a choice of normaliza-
tion to reflect the multiple counting of identical states

in the integral over all momenta. We have now restored
the relativistic normalization for integrals. Note that the
label “in” in |f ; in〉 does not refer to a particular type of
state. Rather it refers to the specification of the state in
terms of a given array of momentum-space functions f ,
which specify the state in terms of its particle content at
asymptotically large negative times. Equation (31) is an
expansion of one particular Heisenberg-picture state, so
the coefficients have no time dependence.

Exactly similar considerations apply to treating states
with given momentum content in the asymptotic future,
i.e., states denoted |f ; out〉.

The Hilbert-space structure can now be specified with-
out mention of the basis states themselves, by referring
everything to the normalizable states |f ; in〉. The inner
product is then

〈f ; in|g; in〉

=

∞∑
n=0

1

n!

∫  n∏
j=1

d̃pj

 g∗n(p1, . . . ,pn)fn(p1, . . . ,pn).

(32)

E. Product states

For our derivations of the S-matrix etc, it will be
sufficient to restrict to product states. Thus given
momentum-space wave functions f̃1(p) and f̃2(p) for sin-
gle particles, we will define a two-particle state |f1, f2; in〉
to have the wave function

f̃1(p1)f̃2(p2) + f̃2(p1)f̃1(p2). (33)

Since we will often work with related functions in coordi-
nate space, I now use the over-tilde to denote momentum-
space quantities.

More generally an n-particle initial state
|f1, . . . , fn; in〉 is defined to have the wave function

n∏
j=1

f̃j(pj) + permutations, (34)

with a total of n! terms. A product state |g1, . . . , gn; out〉
with specified content in the far future is defined simi-
larly.

In the notation using basis states, we write, for exam-
ple, a two-particle initial product state as

|f1, f2; in〉 =

∫
d̃p1 d̃p2 |p1,p2; in〉 f̃1(p1)f̃2(p2). (35)

The symmetrization appropriate to bosons is enforced by
the basis states, and no separate symmetrization of the
wave function is needed.
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With the conventions of Sec. III, the normalization of this state is given by

〈f1, f2; in|f1, f2; in〉 =

∫
d̃p |f̃1(p)|2 ×

∫
d̃p |f̃2(p)|2 +

∫
d̃p f̃1(p)∗f̃2(p)×

∫
d̃p f̃2(p)∗f̃1(p)

'
∫

d̃p |f̃1(p)|2 ×
∫

d̃p |f̃2(p)|2. (36)

In normal applications, the two wave functions are chosen to describe two very distinct incoming particles and therefore
have negligible overlap, or even zero overlap. Then only the first term in Eq. (36) needs to be retained, as indicated
on the second line. It is generally sensible to normalize each wave function separately to∫

d̃p |f̃1(p)|2 =

∫
d̃p |f̃2(p)|2 = 1, (37)

which gives a normalized state |f1, f2; in〉 to a very good approximation.
One can apply the formalism of in-states to have more than 2 incoming particles, and this is done in the general

theory for the S-matrix and the LSZ reduction formula, etc. But such states are not normally used for describing
standard experiments.

As regards out-states, the situation concerning multiple particles is of course different. In the same way as we did
for in-states, we write an expansion of normalizable out-states in terms of basis states:

|g1, . . . , gn; out〉 =

∫
d̃q1 . . . d̃qn′ |q1, . . . , qn′ ; out〉

n∏
k=1

g̃k(qk). (38)

Generally, in QFT we do not have an adequate direct definition of the basis states. Instead we will see how to
construct normalizable states |f1, . . . , fn; in〉 and |g1, . . . , gn; out〉 by applying suitable explicitly defined operators to
the vacuum. After that we can construct basis states by the use of a limit of wave functions that approach delta
functions, effectively a distributional construction.

F. The S-matrix in general

Probabilities relevant for scattering are constructed from (the absolute value squared) of overlap amplitudes such
as 〈g1, . . . , gn; out|f1, f2; in〉. These can be expressed as integrals over the wave functions. Thus we write

〈g1, . . . , gn; out|f1, f2; in〉 =

∫ n∏
k=1

(
d̃qk

) 2∏
j=1

(
d̃pj

) n∏
k=1

g̃∗k(qk)

2∏
j=1

f̃j(pj)Sq1,...,qn;p1,p2
. (39)

The quantity Sq1,...,qn;p1,p2
is called the S-matrix. It can

be considered as the overlap 〈q1, . . . , qn; out|p1,p2; in〉
of basis states. More compactly, if α and β are arrays of
momentum labels for in- and out-basis state, of the form
given in Eq. (30), then we write

Sβ;α = 〈β; out|α; in〉. (40)

The S-matrix has two components. One is a unit matrix
term, which can be symbolized by δβα, and that is the
expression of a situation with no scattering. The other
is the term with scattering. One therefore can write:

Sβα = δβα + iTβα, (41)

where the T-matrix contains the contribution of actual
scattering. When we restrict to 2-body initial states, as
is normal, then the reduction formula, to be discussed
below, gives the T-matrix in terms of connected Feynman
graphs only.

However, overlaps such as those on the right-hand side
of (40), involving some kind of generalized plane-wave
states, are hard, if not impossible, to define directly. One
can already see this in elementary quantum mechanics in
Eq. (25), where the basis wave functions do not fall off
for large x and so the integral over all x is not defined
as an ordinary integral. Distributional methods give an
appropriate definition, as explained around that equa-
tion. Then implicitly or explicitly there is an integral
with momentum-space wave functions. These considera-
tions apply equally to QFT.

Now the left-hand side of (39) is properly defined in it-
self. Then the S-matrix is a kind of master function with
the aid of which all of 〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉
can be computed by integrating the S-matrix multi-
plied by wave functions. One could equally say that
the S-matrix gives a basis for constructing all cases of
〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉.
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The significance of the reduction formula, to be dis-
cussed below, is that it shows how to express the S-matrix
in terms of quantities that can be computed (e.g., from
Feynman graphs) in momentum space with perfectly def-
inite values of external momentum. The primary results
of many calculations are for values of particular S-matrix
elements. Then, by a well-known formula, scattering
cross sections are expressed in terms of these, thereby
giving experimentally testable predictions.

Generally, we conceive of the state of a system involv-
ing scattering as being specified by the contents of the
initial state, e.g., by Eq. (35). This is a Heisenberg-
picture state, which is independent of time. Measure-
ments involve the determination of momenta of the out-
going particles after the scattering. It is therefore useful
to express the state |f1, f2; in〉 as a combination of the
(momentum-space-basis) out-states:

|f1, f2; in〉 =

∞∑
n=2

1

n!

∫ n∏
k=1

(
d̃qk

) ∫ 2∏
j=1

(
d̃pj

)
|q1, . . . , qn; out〉Sq1,...,qn;p1,p2

2∏
j=1

f̃j(pj), (42)

where the g functions no longer appear, and the 1/n! factor takes care of the effect of the indistinguishability of the
n final-state particles. This formula follows easily from the previous ones. It has a sum over all possible numbers of
particles in the final state. Nonzero terms will, of course, be restricted in any particular application to those permitted
by momentum conservation (implemented by a delta function in the S-matrix). Equation (42) can be conceived of as

|f1, f2; in〉 =

∞∑
n=2

∫ n∏
k=1

(
d̃qk

) ∫ 2∏
j=1

(
d̃pj

)
|q1, . . . , qn; out〉 〈q1, . . . , qn; out|p1,p2; in〉

2∏
j=1

f̃j(pj) (43a)

=
∑
β

|β; out〉〈β; out|f1, f2; in〉, (43b)

where the sum over β is a very symbolic notation for the sum and integral over all possible final states (including
identical-particle effects, where needed).

G. Further comments on the need to use
normalizable states

Actual scattering events are approximately localized in
space and time. Thus, if a physical state of a system is
represented by a Heisenberg-picture state |ψ〉 in which
there is a standard scattering, then we are able to say
that to a good approximation the state is composed of
two incoming particles for time t less than some value t−.
For large enough times, t > t+, the state is of some num-
ber of outgoing particles, or rather is a superposition of
such configurations. The times t− and t+ can be deter-
mined from the state, to some approximation. Similarly
an approximate spatial location of the scattering can be
determined. The state is certainly not invariant under
translations in space and time.

Suppose we considered a state |P 〉 of particles of ex-
actly definite momenta. Then the state is an eigenstate of
total 4-momentum. Since the operators for 4-momentum
generate translations, the effect of a translation is to mul-
tiply the state by a phase. The phase is irrelevant to the
physical content and there is no way to generate preferred
values of time and position from the state |P 〉.

Now it could be argued that over the scale of the
scattering, the particles are governed by wave functions
that are plane waves to a good approximation, and that
therefore the wave functions are not particularly relevant.
Moreover it is true that actual Feynman graph calcula-

tions for scattering use mathematically exact values of
momenta on the external lines, and the methods of cal-
culation are indeed justified by the reduction formula.
But the actual derivation of the calculational methods
does need the wave packets if it is to be valid. What is
shown is that the details of the wave packets drop out
provided that their size is simultaneously much larger
than the spatial size of the scattering event itself and
much smaller than the distance to the experimental ap-
paratus for detecting outgoing particles. This condition
is obviously satisfied by many orders of magnitude in
typical experiments.

See also Coleman’s lecture notes on QFT [10, 11] for
another explanation of why full scattering theory in QFT
cannot be formulated directly in terms of plane-wave
states.

V. LARGE-TIME ASYMPTOTICS OF GREEN
FUNCTION

Even before seeing an actual complete demonstration,
it is natural to expect that the n′ → n S-matrix is re-
lated to the asymptotics for an n+ n′-point Green func-
tion where the times of n′ of the fields are taken to −∞,
and the times of the other n fields are taken to +∞, to
correspond to the initial and final particles. It is the LSZ
reduction formula that realizes this expectation and gives
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the exact quantitative relation.

Since the details of the proof of the reduction formula
are rather abstract, it is useful to start with a direct ex-
amination of the coordinate-space asymptotics of Green
functions, in simple generalizable examples. This moti-

vates and illuminates the technical steps of the proof of
the reduction formula.

We consider first the connected 4-point Green function
in lowest-order in φ4 theory, Fig. 1, whose value in co-
ordinate space is expressed in terms of the well-known
momentum-space formula by

G4(x1, x2, y1, y2) = − iλ
∫

d4p1

(2π)4

d4p2

(2π)4

d4q1

(2π)4

d4q2

(2π)4
eip1·x1+ip2·x2−iq1·y1−iq2·y2×

× i

p2
1 −m2 + iε

i

p2
2 −m2 + iε

i

q2
1 −m2 + iε

i

q2
2 −m2 + iε

(2π)4δ(4)(p1 + p2 − q1 − q2). (44)

We analyze this in the limit that each x0
j → −∞ and each y0

j → +∞. Since the asymptotics are ultimately governed
by the separation between each external vertex and the interaction vertex, it is useful to use the formula

(2π)4δ(4)(p1 + p2 − q1 − q2) =

∫
d4z e−i(p1+p2−q1−q2)·z (45)

to express the Green function as an integral over the position of the interaction together with independent integrals
over the momentum of each line:

G4(x1, x2, y1, y3) = − iλ
∫

d4z

∫
d4p1

(2π)4

d4p2

(2π)4

d4q1

(2π)4

d4q2

(2π)4
eip1·(x1−z)+ip2·(x2−z)−iq1·(y1−z)−iq2·(y2−z)×

× i

p2
1 −m2 + iε

i

p2
2 −m2 + iε

i

q2
1 −m2 + iε

i

q2
2 −m2 + iε

. (46)

p1

p2

q1

q2

FIG. 1. Lowest-order graph for 4-point Green function in
φ4 theory, with momentum labeling appropriate for 2 → 2
scattering.

For each propagator we have an integral of the form∫
d4k

(2π)4
eik·(x−z)

i

k2 −m2 + iε
. (47)

Now, in the limit that we are interested in, the position
difference x− z between ends of the propagator is scaled
to be large. Then for almost all values of k, we can
deform the integration of k off the real axis and get a
strong suppression from the effect of the imaginary part
of k in the exponential. We need to determine where the
deformation is not possible, and what the consequences
are.

To formalize the analysis, we notate the contour defor-
mation as

k = kR + iκkI(kR). (48)

Here kR is real, kI(kR) is a real-valued function, and κ is
a parameter ranging from 0 to 1. The variable of integra-
tion is kR. Then, given a function kI(kR) and a value of
κ, Eq. (48) determines a contour of 4 real dimensions in
a complex space of 8 real dimensions. Varying κ from 0
to 1 gives a continuous family of contours, starting from
an integration over all real k. Cauchy’s theorem tells us
that the integral is independent of κ, provided that no
singularities are encountered as the contour is deformed.

To get a suppression we need

kI · (x− z) > 0, for suppression by exponential. (49)

The suppression of the integral is exponential in the large
scaling of x− z.

However at certain points the contour deformation is
obstructed by the propagator pole. At the pole, k2 =
m2. Suppose at some point the pole fails to obstruct
the contour deformation, then at κ = 0, kI times the
derivative of k2 −m2 is positive, compatible with the iε
prescription:

kµI
∂

∂kµR
(k2
R −m2) = 2kI · kR > 0,

for non-obstruction by pole. (50)

If there exists a kI obeying both of conditions (49) and
(50), then we can deform the contour and get an expo-
nential suppression.
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p1

pn′
qn

q1

FIG. 2. Graphical structure of general connected Green func-
tion with factorization of full external propagators, with mo-
mentum labeling appropriate for n′ → n scattering.

To get asymptotics of the Green function, we are in-
terested in unsuppressed contributions, and these arise
where such a kI fails to exist. The failure occurs when
the vectors x − z and kR are in opposite directions, i.e.,
when x − z + αkR = 0 for some positive α. This im-
mediately implies that x − z is time-like, since kR must
be on-shell in order that there is a pole to obstruct the
deformation.

Consider the case that k is one of the incoming mo-
menta p1 or p2. We already know x − z is time-like for
an unsuppressed contribution. Since x has large negative
time, x− z is a time-like past-pointing vector. The non-
suppression condition then states that kR has positive
energy and is on-shell. Thus the non-suppressed con-
tributions come from near the configuration where kR
corresponds to propagation of a classical particle from
x to z, which is exactly what we expect for incoming
asymptotic particles in a scattering process.

Similarly the asymptotic behavior when the times of
y1 and y2 get large and positive corresponds to momenta
q1 and q2 for outgoing classical particles.

Hence the asymptotic large-time behavior of the Green
function is controlled by the poles of the propagators on
the external lines, with the momenta involved being those
of the appropriate classical particles. The mass of a par-
ticle is determined by the position of the pole in the prop-
agator.

This idea generalizes readily. In Fig. 2 the connected
part of an n+n′-point Green function is decomposed into
the product of an amputated part and full propagators
for each external line. Generally a full propagator with
momentum k has not only a particle pole, but a set of
other, weaker, singularities at higher values of k2 that are
thresholds for k to make multiple particles. The domi-
nant large time behavior is governed by the strongest
singularity, i.e., the particle pole.

VI. KÄLLEN-LEHMANN REPRESENTATION

The Källen-Lehmann representation [28, 29] (or “spec-
tral representation”) is important to the general analysis

of the 2-point function, and to the generality of the cor-
respondence between single-particle states and the posi-
tions of poles of 2-point functions in momentum space.
More detailed treatments can be found in many text-
books on QFT, and I will only summarize here the results
needed for this paper.

The Källen-Lehmann representation concerns the 2-
field correlator:

〈0|φ(x)φ(y)|0〉, (51)

and it is obtained by inserting a complete set of in- or out-
basis states between the two fields and by using the fact
that for a state |p〉 of 4-momentum p, the x dependence
of 〈0|φ(x)|p〉 obeys

〈0|φ(x)|p〉 = 〈0|φ(0)|p〉e−ip·x. (52)

Both of the time-ordered propagator and the vacuum
expectation value of equal-time commutators (and non-
equal-time commutators) can be obtained from (51). All
of these are expressed in terms of a non-negative spec-
tral function ρ(s) which measures the size of |〈0|φ|p〉|2
for states of invariant squared mass s, and is defined by

ρ(s)
def
= (2π)3

∑
X

δ(4)(pX − ps)|〈0|φ(0)|X〉|2, (53)

where
∑
X denotes a sum/integral over a complete set

of 4-momentum eigenstates (which can be chosen to be
the out-basis states or the in-basis states), pX is the 4-
momentum of |X〉, and ps is a vector obeying p2

s = s and
having a positive energy component.

We can now express the 2-field correlator in terms of
a free field correlator:

〈0|φ(x)φ(y)|0〉 =

∫ ∞
0

ds ρ(s) ∆((x− y)2; s)

=

∫ ∞
0

ds ρ(s)

∫
d3k

(2π)32
√

k2 + s
e−ik·(x−y),

=

∫
d4k

(2π)3
ρ(k2)θ(k0)e−ik·(x−y), (54)

where in the exponent on the second line k0 =
√
k2 + s.

The quantity ∆((x− y)2; s) is the correlator (51) for the
case of a free field of mass

√
s, which for space-like x− y

is in terms of a particular Bessel function (e.g., Ref. [30]):

∆((x− y)2; s) =

√
s

4π2
√
−(x− y)2

K1

(√
−s(x− y)2

)
for space-like x− y. (55)

It then follows that the propagator, i.e., the Fourier
transform of the time-ordered version of the correlator,
is

Ĝ2(p2) =

∫ ∞
0

ds ρ(s)
i

p2 − s+ iε
. (56)
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Suppose that the field has a non-zero matrix element
between the vacuum and a single particle state:

〈0|φ(x)|p〉 = c e−ip·x, (57)

where p0 = Ep =
√
p2 +m2

phys, andmphys is the physical

mass of the particle.13 Then there is a contribution to
ρ(s) of the form |c|2δ(s−m2

phys). All other contributions
are from continuum parts of the allowed energies, and
start at higher particle thresholds; they give no further
delta functions. Hence the propagator has a pole with
residue |c|2 at p2 = m2

phys:

Ĝ2(p2) =
i|c|2

p2 −m2
phys + iε

+ non-pole term. (58)

We write the residue as R = |c|2.
Commonly one normalizes the single-particle states to

make c real and positive. But this is only possible in one
matrix element like (57). If we examine 2-point functions
for this and other fields that have nonzero coupling be-
tween the vacuum and the single-particle state, then c is
normally different in each case and can only be normal-
ized to be real and positive for one of them.

VII. SPACE-TIME WAVE FUNCTIONS

Since space-time localization is important, let us de-
fine a coordinate-space wave function for each particle in
states such as those in Eqs. (35) and (38), by writing

f(x) = f(t,x)
def
=

∫
d̃p f̃(p) e−ip·x

=

∫
d̃p f̃(p) e−iEpt+ip·x, (59)

where f corresponds to any of the fj or g(x). Here p is
on shell, of course, at the physical particle mass. Each
of these wave functions is a function of time and spatial
position. It is thus like an ordinary Schrödinger wave
function in the non-relativistic quantum mechanics of a
single particle.

Although, in general, there are great difficulties in us-
ing wave functions14 in relativistic theories with interac-
tions, the concept of a wave function is valid in a free-
field theory, for the state of one particle. Our use of wave

13 The form of the dependence on x follows from an application of
the translation operator to the field.

14 For the purposes of the discussion here, a wave function in the
non-relativistic quantum mechanics of a finite number of parti-
cles can be treated as an expansion of a general state in a basis of
states obtained in a corresponding theory of free particles. Ordi-
nary Schrödinger wave functions are such an expansion in a basis
of position eigenstates. When one tries to follow the same ap-
proach in relativistic QFTs, severe difficulties and impossibilities
arise. See, for example, [17–19], and references therein.

functions is as useful auxiliary quantities, in the analysis
of a state in terms of its particle content in the infinite
past or future, where the state corresponds to a set of
isolated particles. That is, we use the concept of wave
function only for the center-of-mass motion of a single
particle and then only when the particle is being cor-
rectly approximated as a free particle. (Since it is the
center-of-mass motion that is relevant here, these ideas
apply equally when the particle is a bound state of more
elementary constituents.)

Unlike the case of multiparticle wave functions in non-
relativistic quantum mechanics, we do not assign a com-
mon time variable to all the single-particle wave functions
for a state of multiple particles. The purpose of our wave
functions is not the one used in non-relativistic quantum
mechanics, where time-dependent wave functions imple-
ment time-dependent states in the Schrödinger picture.
Here their purpose is to simply give a useful quantity with
which to analyze the relation between the states in Eqs.
(35) and (38), the S-matrix, and certain matrix elements
involving the Heisenberg-picture field operators.

In basic applications to scattering, we assume that
the momentum-space wave functions are sharply peaked
about one momentum. Then the coordinate-space wave
functions describe propagating wave packets, as will now
verify. Thus they correspond to propagation of free par-
ticles with approximately definite momenta. For analyz-
ing scattering processes, we will need information about
the asymptotic behavior of wave functions in coordinate
space for large positive and negative times.

Consider a momentum-space wave function that is
sharply peaked around one value of momentum, p0, and
that has a width characterized by one15 number ∆p. We
will initially choose the wave function also to be real and
non-negative. One simply possibility would be a Gaus-
sian

f(p;p0,∆p)
?
= De−(p−p0)2/∆p2 , (60)

with D adjusted to give unit normalization:∫
d̃p |f(p)|2 = 1. (61)

However, this has a (small) tail extending out to infi-
nite momentum. For reasons to be reviewed below, this
gives large-time behavior that is not quite optimal for
constructing a proof of the reduction formula. Therefore
[6, 7] it is better to choose a wave function of compact
support, i.e., one that vanishes outside a finite range of
p. One simple possibility would be the infinitely differ-
entiable function

f(p;p0,∆p) =

{
De−1/(1−|p−p0|

2/∆p2) if |p0 − p| < ∆p,

0 if |p0 − p| ≥ ∆p,

(62)

15 One can generalize to the case that there are very different widths
in different directions. But that will only add notational com-
plexity without changing the principles.
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with D being again adjusted to give a normalized wave
function, (61).

The corresponding coordinate-space wave function,
from Eq. (59), is of maximum size at the origin, i.e.,
when x = 0. This is because at that point, the integrand
is strictly positive. At all other values of x, the phase fac-
tor e−iEpt+ip·x is not always unity, and therefore there
are some cancellations.

A. Properties needed

For a treatment of scattering theory and a derivation
of the S-matrix, we need to know roughly the behavior
of single-particle wave functions in coordinate space. In
the derivation, we will encounter integrals of coordinate-
space wave functions multiplied by Green functions, as
in Eq. (136), in which certain ranges of time are selected.
We will need to understand which regions of the integrals
over spatial coordinates give non-zero contributions in a
limit of infinite time and which regions give asymptoti-
cally vanishing contributions, and to see that the asymp-
totic space-time structure does in fact corresponding to
the expected scattering phenomena.

To this end, suppose we are given a wave function obey-
ing the properties given just above. Then we need esti-
mates of the following:

1. The location in x of the peak of the wave function,
for a given value of t.

2. The corresponding width in x.

3. The asymptotic behavior when t goes to infinity
(or negative infinity), as a function of x. This is
especially needed for the asymptotic behavior far
from the peak of the wave function.

However, only rough estimates will be needed.

When related to our use of f(x) in QFT, the location
of the peak verifies that the particle propagates classi-
cally. The width of the peak quantifies the inaccuracy
of a purely classical view; in a scattering situation, the
width determines when and where the different particles
in the initial or final states can start to be regarded as
separate non-interacting particles. The asymptotic be-
havior is needed to ensure that asymptotically the parti-
cles are cleanly separated; it is here that the motivation
will arise to use wave functions of compact support in
momentum space.

If we use a momentum-space wave function of a form
such as is defined in (60) or (62), we will find that the
classical trajectory of the particle goes through the origin
of spatial coordinates at time zero, and also has minimum
width there. Of course, we need to allow more general
possibilities for the trajectory; this is easily done by ap-
plying a space-time translation — see Sec. VII F below.

B. Stationary phase

The integrand in (59) for the coordinate-space wave
function is a real, positive factor multiplied by the phase
e−iEpt+ip·x. Suppose that t and/or x is made large.
Then the integrand, as a function of p, generally has
rapid oscillations, which result in a small contribution to
f(x). Given a particular value of time t, if x is increased
sufficiently, then for most values of p the oscillations be-
come arbitrarily rapid, and the corresponding contribu-
tion to f(x) decreases rapidly to zero, i.e., faster than
any power of x, by a standard theorem.

The exception to these statements occurs where there
is a lack of oscillations, i.e., at and close to the point
of stationary phase. Given a value of t and x, the
stationary-phase point is the value pc where

0 =
∂(−Epc

t+ pc · x)

∂pc

= − pct

Epc

+ x, (63)

i.e.,

pc =
mx sign t√
t2 − x2

, (64)

so that

Epc
=

m|t|√
t2 − x2

, (65)

Notice that the stationary phase condition only has a
solution when x = (t,x) is time-like or zero.16

Now let use restrict to the case that f̃(p) is like the
examples in (60) or (62), i.e., real, non-negative, and
strongly peaked at one value p = p0. Then, given t,
the coordinate-space wave function is largest when the
stationary phase point is close to the maximum of the
function f̃(p), i.e., when pc = p0, and thus when

x ' p0t

Ep0

= v0t. (66)

This is the trajectory of a classical relativistic particle,
which therefore, as expected, matches the overall propa-
gation of the wave packet. The 3-velocity is v0 = p0/Ep0

.

C. Width

For the analysis of the width of the coordinate-space
wave function in coordinate space for a given t, we still

16 We have assumed that the mass m is non-zero, as is the case
throughout this paper. Modifications to the treatment are
needed if m = 0. Furthermore, if the momentum-space wave
function does not fall off sufficiently rapidly as |p| → ∞, then a
degenerate case of Eq. (63) is relevant in the limit of infinite pc

with light-like x. A compact-support condition on f̃(p) avoids
that issue, among others.
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consider cases with momentum-space wave functions like
those in (60) or (62). First consider t = 0. The peak of
the wave function is at the origin, x = 0. As x moves
away from this position, we reach a situation when about
one oscillation of the eip·x factor as a function of p fits
inside the peak of the momentum-space wave function.
Hence the width of the wave function is of order 1/∆p.
We can call this the uncertainty-principle value or the
quantum mechanical uncertainty.

When |t| is increased sufficiently much away from zero,
the oscillations in e−iEpt are important. For determining
the width of the wave function, these first become signif-
icant when there is a change of order unity in the phase
when one moves from p = p0 to a value differing by ∆p.
We estimate where this happens by using the derivative
of Ep at p0 and our general assumption that ∆p is small.
Then the uncertainty-principle estimate continues to ap-
ply when

|t| . Ep0

∆p(|p0|+ ∆p)
. (67)

Notice that if ∆p is very small, this is a large range of
times. But always, for a given wave function, once t gets
large enough in size, positive or negative, the uncertainty
principle uncertainty is insufficient.

At large enough values of time, it is the stationary
phase point given in (64) that is relevant. The size of the
coordinate-space wave function corresponds to the size of
the f̃(p) at p = pc. This is multiplied by an overall t-
independent factor from the integration measure, and by
a factor with power-law t dependence. The second factor
can be estimated asymptotically by expanding the expo-
nent of the phase factor to second order in momentum
about p = pc, and doing a saddle point expansion.

Hence, for large enough |t|, the width of the wave func-
tion is determined by where the stationary phase point
deviates from the central value of momentum by ∆p.
That is it is determined by where |pc(t,x)−p0| = O(∆p).
To understand what this implies for where in x, the
coordinate-space wave function starts to fall off, we start
with a value of pc obeying the last condition, and com-
pute the corresponding value of x = pct/Epc

. This cor-
responds to the propagation of a classical particle of mo-
mentum pc. In this situation of large enough |t|, the
width of the wave function therefore corresponds to clas-
sical dispersion, i.e., to the different velocities of classical
particles of different momenta.17 The dependence of this
contribution on the width, as a function of ∆p and t, is
completely different to that of the quantum uncertainty-
principle width. It increases proportionally to t, whereas
the uncertainty-principle is independent of time. More-
over it is proportional to ∆p, decreasing to zero when

17 Note that the width in x is then quite different in a direction
perpendicular to p0 than parallel. This is simply a consequence
of the form of the dependence of velocity on momentum.

∆p → 0. In contrast, the uncertainty principle width is
of order 1/∆p and becomes infinite when ∆p→ 0.

An appropriate estimate for the order of magnitude of
the width is simply to add the uncertainty-principle and
classical-dispersion widths or to add them in quadrature.

D. Asymptote

We now evaluate the asymptotics of the wave function
as t→ ±∞. If (t,x) is time like, then the wave function’s
value is dominated by an integral near the correspond-
ing stationary phase point pc. This is multiplied by a
power law in t. When (t,x) is space-like, there is no
stationary-phase point and hence the coordinate-space
wave function falls off faster than any power of t (for a
fixed ratio x/t), as follows from standard properties of
Fourier transforms of infinitely differentiable functions.

For time-like (t,x), the leading asymptote is given by
a Gaussian approximation around the stationary-phase
point, as I now show. Let δp = p− pc, with pc given by
Eq. (64), and let δp‖ and δp⊥ be the components of δp
parallel and perpendicular to pc. Then the exponent in
Eq. (59) is

−iEpt+ ip · x =− im
√
t2 − x2

− i
δp2
‖(t

2 − x2)3/2

2mt2
− i δp

2
⊥(t2 − x2)1/2

2m
+ . . . , (68)

where the cubic and higher terms indicated by . . .
are suppressed by a power of |δp|/Epc

relative to the
quadratic term.

We can deform the integrals over δp‖ and δp⊥ into
the complex plane to go down the directions of steepest
descent. For large |t|, the integral is dominated by δp of
order 1/t. More exactly, the dominance is by δp‖ of order√
mt(t2−x2)−3/4 and δp⊥ of order

√
m(t2−x2)−1/4. We

can use a Gaussian approximation to estimate f(x):

f(x) ∼ f̃(pc)e−3πi/4m3/2

(2π)32Epc

e−i
√
t2−x2 t

(t2 − x2)5/4

=
f̃(pc)e−3πi/4E

3/2
pc

(2π)32m

e−i
√
t2−x2

sign t

|t|3/2 , (69)

with errors suppressed by a power of 1/t. There is im-
plicit dependence on x and t, in the dependence on pc,

since pc = m(x/t)/
√

1− x2/t2, but this is only a de-
pendence on the ratio x/t, i.e., a velocity. By inverting
the relationship of pc to x/t, we see that the momentum-

space wave function f̃(p) at a particular value of momen-
tum gives a contribution to the asymptote of f(x) at a
corresponding value of velocity

x

t
=

p

Ep
=

p√
m2 + p2

, (70)
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FIG. 3. Illustrating space-time evolution of wave function
f(t,x). The horizontal lines indicate at particular times the
width of the wave packet.

which is of course the well-known value for the relativistic
propagation of a classical particle.

At fixed velocity x/t, Eq. (69) shows that f(x) de-
creases like 1/|t|3/2 at large t. When we construct the
S-matrix, it will be the 1/|t|3/2 asymptote that gives the
S-matrix; weaker contributions to f(x) are irrelevant to
the S-matrix.

E. Asymptote for compact support
momentum-space wave function

Some simplifications occur if the momentum-space
wave function has compact support, i.e., if it vanishes
outside a finite range of p. Then, for the coordinate-
space wave function, the range of velocities x/t for
which applies the 1/|t|3/2 decrease is equally compact,
i.e., bounded. Outside this range, f(x) decreases more
rapidly with t. This provides a useful visualizable local-
ization, as in Fig. 3. For a given large value of |t|, the
range of x in which the 1/|t|3/2 decrease applies has a
volume of order |t|3.

The space of functions of compact support is dense in
the space of normalizable wave functions, so we have no
loss of generality if we restrict attention to wave functions

of compact support in momentum space.
In contrast it is not particularly useful to impose a

condition of compact support in spatial position on the
coordinate-space wave function. To see this, observe that
if a function of x has compact support, then its Fourier
transform into p space can be continued to all complex
p and is analytic everywhere. Conversely, if there is a
singularity of the Fourier transform for some value of p,
then the original function of x cannot be of compact sup-
port. Now suppose, the wave function f(x) in (59) is of
compact support in x for one value of t, say t = t0. Then
f̃(p) e−iEpt0/Ep is analytic for all complex p. Going to

another value of t gives an extra factor e−iEp(t−t0) on the
right-hand side of (59). This is not analytic, because it
has a singularity where p2 = −m2

phys, and hence f(t,x)
is not of compact support in x. Thus a condition of com-
pact support in space can be maintained for at most one
instant in time.

F. Shift of wave function in coordinate space

We now ask how to shift the wave, so that the classical
trajectory is

x ' xa + v0(t− ta), (71)

so that instead of occurring at the origin, the minimum
width occurs at time ta, with the position of the particle
at that time being xa. This is done by multiplying the
momentum-space wave function by a suitable phase. We
replace f(p;p0,∆p) by

f(p;p0,∆p) 7→ f(p;p0,∆p)e
iEpta−p·xa . (72)

Then the coordinate-space wave function gets changed
by

f(t,x) 7→ f(t− ta,x− xa), (73)

as can be verified by substituting the modified
momentum-space wave function in the defining formula
(59) for the coordinate-space wave function.

VIII. THE REDUCTION FORMULA

In this section, I state the reduction formula, of which an improved proof will be in Sec. XI. It is useful to focus
attention separately on the connected components of the Green functions (and hence of the S-matrix). It is the fully
connected term that is relevant to standard calculations, and we will focus exclusively on that in this section.

Let G̃conn
N (p1, p2, . . . pN ) be a connected N -point Green function, and let ΓN (p1, p2, . . . pN−1)(2π)4δ(4)(p1 + · · ·+pN )

be the corresponding amputated Green function. It is convenient to choose ΓN to be defined without the momentum
conservation delta function. So it only has N − 1 independent momentum arguments, and the last momentum obeys

pN = −∑N−1
j=1 pj . We choose the convention for the arguments of Green functions that all the momenta flow in.
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The unamputated and amputated Green functions are related by

G̃conn
N (p1, p2, . . . pN ) =

N∏
j=1

Ĝ2(p2
j ) ΓN (p1, p2, . . . pN−1)(2π)4δ(4)(p1 + · · ·+ pN ), (74)

where Ĝ2(p2) is the propagator, i.e., the 2-point function without its momentum-conservation delta function. Let c
be the coefficient in the normalization of the vacuum-to-one-particle matrix element, as in Eq. (57). Then, as seen at
Eq. (58), the propagator has a pole at the physical mass of the particle and the propagator residue is R = |c|2.

The LSZ theorem [1] both states that the wave packet states 〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉 have the form (39) and
states how the S-matrix is given in terms of Green functions. The LSZ result for the connected part18 of the S-matrix
element for n′ → n scattering is

Sconn
q1,...qn;p1,...pn′

= lim
on−shell

1

cn(c∗)n′

n∏
k=1

q2
j −m2

phys

i

n′∏
j=1

p2
j −m2

phys

i
G̃conn
n+n′(p1, . . . , pn′ ,−q1, · · · − qn−1). (75)

Observe that the full Green function G̃n+n′ diverges when the external momenta are put on-shell. This formula asserts
that the S-matrix is obtained by first multiplying the Green function by the factors of p2

j −m2
phys, etc, to cancel the

poles, and by then taking the limit of on-shell momenta, and finally by inserting the factor 1/(cn(c∗)n
′
). An important

and non-trivial part of (75) is this last factor, which involves the normalization of the vacuum-to-one-particle of the

field. In the usual case that c is real and positive, the factor equals 1/R(n+n′)/2, where R is the residue of the pole in
the full propagator.

A convenient version of the reduction formula is in terms of the amputated Green function:

Sconn
q1,...qn;p1,...,pn′

= (2π)4δ(4)
(∑n′

j=1pj −
∑n
k=1qk

)
(c∗)ncn

′
Γn+n′(p1, . . . , pn′ ,−q1, · · · − qn−1) . (76)

Here the external momenta of the amputated Green func-
tion are set on shell from the beginning. This formula
gives the following procedure for computing the S-matrix:

1. Replace each full external propagator of the full
Green function by the factor c for incoming lines
and c∗ for outgoing lines.

2. Set the external momenta on-shell.

The actual statement of the theorem by LSZ was for
the case that the vacuum-field-particle matrix element
had unit normalization, i.e., c = 1. But it is elementary
to extend the theorem to where c 6= 1, as can be seen in
many textbooks, e.g., [21–23, 31]. LSZ presented their
result in a different but equivalent form to that given
here. Their formula is obtained from Eq. (39) by sub-
stituting Eq. (75) for the S-matrix and then expressing
the momentum-space Green function in terms of the cor-
responding coordinate-space Green function. It is quite
elementary to reverse the procedure, i.e., to perform the
Fourier transforms in LSZ’s actual formula to obtain the
combination of Eqs. (39) and (75). Many, but not all,

18 Similar formulas can also be worked out for the disconnected
parts, but it is the connected part that is relevant for computing
cross sections. Moreover, for typical practical applications, one
only has two incoming particles, n′ = 2.

FIG. 4. Propagator corrections.

authors do present the momentum-space form that is rel-
evant for actual calculations.

A simple extension to matrix elements of operators be-
tween in and out states is also elementary — see p. 53 of
[21]. Such matrix elements have the form

〈α; out|T operator(s) |β; in〉. (77)

Cases in regular use are where operators are currents in
QCD and the matrix elements are for the hadronic part
of scattering amplitudes or cross sections that involve
both QCD and the electroweak interactions, e.g., deeply
inelastic scattering and the Drell-Yan process.

Practical calculations involve on-shell amputated
Green functions and a separate calculation of the physical
mass and the propagator residue. Direct calculations of
perturbative corrections to the propagator are not useful
in themselves because they give terms with higher-order
poles, from two or more free propagators in series, e.g.,
Fig. 4. This results in non-convergence of the sum when
the momentum is near the particle pole.

This problem is evaded by a resummation in terms
of the self-energy function Σ(p2,mR, λR), which is de-
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fined to be i times a 2-point Green function that is ir-
reducible in the external line; it includes any necessary
renormalization counterterms. It is analytic when p2 is
in a neighborhood of its on-shell value. I have written
Σ(p2,mR, λR) with explicit arguments for renormalized
mass and coupling. In many schemes there is also a
renormalization mass µ, but I have left that argument
implicit. There is no requirement for the renormalized
mass to equal the physical mass.

In terms of the self-energy, the propagator is

Ĝ2(p2) =
i

p2 −m2
R − Σ(p2,mR, λR) + iε

. (78)

The physical mass can be determined in terms of the
parameters of the theory, i.e., the renormalized mass and
coupling, by solving

m2
phys −m2

R − Σ(m2
phys,mR, λR) = 0, (79)

which can be done order-by-order in perturbation theory.
The propagator’s residue is then

R =
1

1− ∂Σ(p2)/∂p2

∣∣∣∣
p2=m2

phys

, (80)

which is also susceptible to perturbative calculation.

IX. CREATION OF IN- AND OUT-STATES BY
FIELDS

In Eqs. (35) and (38), we proposed states |f1, f2; in〉
and |g1, . . . ; out〉 that have simple expressions when pa-
rameterized by what we termed momentum-space wave
functions: f̃j(p), etc.

For all our considerations concerning scattering, we as-
sume that each momentum-space wave function is peaked
around a particular value of momentum. Since the space
spanned by such functions is the whole space of wave
functions, this condition will not give any loss of gener-
ality. But it will enable arguments concerning scattering
to be visualizable.

The state |f1, f2; in〉 is intended to be a state which
at very large negative times approaches a state of
free separated individual particles with wave function
f̃1(p1) f̃2(p2). The simplest case to understand is when,

following Sec. VII E, we choose f̃1 and f̃2 to be of compact
support, and also choose them to have non-overlapping
supports. In this case, we have non-overlap of the region
of asymptotic 1/|t|3/2 decrease of the corresponding co-
ordinate space wave functions. It is the region of 1/|t|3/2
decrease that matters, because that is the part that is rel-
evant for obtaining the S-matrix. In the non-overlapping
case, the regions of 1/|t|3/2 decrease for f1 and f2 are
space-like separated for a given large enough value of t
(positive or negative), and then the particles are causally
separated.

When we go to the more general overlapping case, a
somewhat less trivial argument is needed to show that

the two particles do not causally influence each other.
Our proof of the reduction formula will be organized in
such a way that the issue of separation of the different
particles at infinite time is handled rather indirectly.

Similar statements apply to the state |g1, . . . ; out〉, ex-
cept that they are applied in the far future. Exactly how
far one has to go to the past and future to have a good
free-particle approximation depends on the state, i.e., on
the wave functions.

The aim of this section is to construct creation op-
erators that genuinely create single asymptotic particles
in the far past and future. The complication we will
need to overcome is that, as we will see, the simplest and
natural candidate definition for these operators, i.e., the
one used by LSZ, gives operators that create much more
than the intended single particles. The new operators
will then be used in a proof of the reduction formula.
Separately, after the proof is completed, we will be able
to verify not only the property inherent in the definition
that one creation operator applied to the vacuum creates
the intended single particle, but also that multiple appli-
cations of the operator create the intended multiparticle
state and nothing else.

The starting point consists of the following assump-
tions (a) that we have a QFT that exists and that obeys
standard principles; (b) that it has a scattering theory
that obeys the principles given in Sec. IV; and (c) that
there is a nonzero vacuum-to-one-particle matrix element
of the field φ(x). Poincaré invariance is assumed, as
usual, but that assumption can be relaxed, normally with
a penalty only in notational complexity.

I will first demonstrate by explicit perturbative cal-
culations the already-summarized problem that the LSZ

creation operators a†f (t) create much more than the de-
sired single particles, and that the limits as t → ±∞
do not help. Because the field operators in the defining

formula for a†f (t) are at fixed time, there is effectively
an infinite uncertainty in energy, with the corresponding
possibility of creating arbitrarily many particles.

With the results of those calculations as motivation, I
will then give a suitable definition of creation operators.
It modifies the LSZ definition by applying a time average.

A. Free fields

We start with a review of the case of a free field theory,
without interactions. With the standard normalization,
the Lagrangian density is

L =
1

2
(∂φfree)2 − m2

2
φ2

free. (81)

The standard expansion of the field in terms of time-
independent creation and annihilation operators was
given in Eq. (5). These operators can be found in terms
of the field φfree(t,x) and the canonical momentum field
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πfree(t,x) = ∂φfree/∂t at fixed time:

a†k,free =

∫
d3x e−ik·x [Ekφfree(x)− iπfree(x)] , (82a)

ak,free =

∫
d3x eik·x [Ekφfree(x) + iπfree(x)] , (82b)

where kµ =
(√

k2 +m2,k
)

. The φ and π fields are

important because they are the independent fields that
appear in the Hamiltonian. From the equal-time commu-
tation relations, and specifically [φfree(t,x), πfree(t,y)] =
iδ(3)(x− y), follow the standard commutation relations,
(2), for the annihilation and creation operators. Given
that ak,free annihilates the vacuum, i.e., ak,free|0, free〉 =
0, all the usual consequences follow.

A generic normalizable one-particle state is

|f ; free〉 =

∫
d̃p |p; free〉 f̃(p)

=

∫
d̃p a†p,free |0; free〉 f̃(p). (83)

It is useful to define creation and annihilation operators
corresponding to this state by

a†f,free
def
=

∫
d̃k f̃(k) a†k, af,free =

∫
d̃k f̃∗(k) ak. (84)

In terms of the coordinate-space wave function defined
by Eq. (59), these operators are

a†f,free = −i
∫

d3x f(x)

←→
∂

∂t
φfree(x), (85a)

af,free = i

∫
d3x f∗(x)

←→
∂

∂t
φfree(x). (85b)

The operators are time-independent operators, a prop-
erty which will no longer hold in an interacting theory.

Then the generic one-particle state can be written as

|f ; free〉 = a†f,free |0; free〉, (86)

and a multi-particle state with a product wave function
is

|f1, . . . , fn; free〉 =

n∏
j=1

a†fj ,free |0; free〉. (87)

B. Analogs of creation and annihilation operators
for interacting fields: first attempt

We now wish to extend the results to an interacting
theory. The overall aim is, if possible, to find operators
that in suitable limits of infinitely large negative and pos-
itive times create the individual incoming and outgoing
particles in (35) and (38), i.e., such that, for example,
something like the following equation is valid:

|f1, f2; in〉 = lim
t→−∞

A†f1(t)A†f2(t)|0〉. (88)

(Note that our actual definitions will contain a second
parameter ∆t and that a non-trivial infinite-time limit is
applied to both parameters.)

A natural proposal, used in the LSZ paper, is to define
the operators in the same way as in the free theory The
operators now become time dependent. Thus operators
of definite momentum are defined by

a†k(t)
def
=

∫
d3x e−ik·x

[
Ekφ(x)− i∂φ(x)

∂t

]
, (89a)

ak(t) =

∫
d3x eik·x

[
Ekφ(x) + i

∂φ(x)

∂t

]
, (89b)

where kµ =
(√

k2 +m2
phys,k

)
, with the physical particle

mass appearing in the formula for the energy in terms of
3-momentum.

Compared with the free-field formulas (82a) and (82b),
the canonical momentum field π(x) has been changed to
the time derivative of the field. For the free-field case
with the standard normalization, corresponding to (81),
the two formulas are the same, of course. There are sev-
eral reasons for the change in the interacting case. One
is that it is exactly what LSZ do. The second is that
when we take account of renormalization in an interact-
ing theory, we will typically change the normalization of
the field. In that case the relative coefficient between the
φ and π terms changes in the definition of the creation
operators, whereas no change in relative normalization is
needed between φ and the time derivative term in (89a)
and (89b). The change in normalization does imply that
the commutation relations of the annihilation and cre-
ation operators no longer have the standard normaliza-
tion that was given in Eq. (2a). However, that will turn
out to be irrelevant to scattering physics because of non-
trivial complications in an interacting theory. Finally,
the key point is that it is with the definitions in the form
(89a) and (89b), and with our later modification of them,
that the LSZ reduction formula is proved.

Corresponding to a wave function and its Fourier
transform, as in (59), we define

a†f (t)
def
=

∫
d̃k f̃(k) a†k(t) = −i

∫
d3x f(x)

←→
∂

∂t
φ(x),

(90a)

af (t) =

∫
d̃k f̃∗(k) ak(t) = i

∫
d3x f∗(x)

←→
∂

∂t
φ(x).

(90b)

Although these operators have time-dependence, their
time-dependence is not given by an application of the
Heisenberg equation of motion. This is simply because
their definition in terms of the field φ(x) involves a time-
dependent numerical-valued function f(x). The field
φ(x) itself does obey the Heisenberg equation, as part
of the definition of the theory.

Some properties of the operators correspond to those
of a free field. For example, from Eqs. (89a) and (89b) it
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follows that the field is expressed in terms of the a and a†

operators in the same form as Eq. (5) for the free theory:

φ(x) =

∫
d̃k
[
ak(t)e−ik·x + a†k(t)eik·x

]
. (91)

It also follows by straightforward calculations from the
definitions that if φ and ∂φ/∂t were to obey equal-time
commutation relations of the same form and normaliza-
tion as in the standard free theory, then the as and a†s
would have their standard commutation relations: these
are just like (2a) and (2b), but with each afree and a†free
replaced by its time-dependent counterpart in the inter-
acting theory.

However, if it were simply asserted that an expansion
of the form (91) exists, then the a and a† cannot be
uniquely deduced from φ and ∂φ/∂t, unlike the case in
the free theory. The problem is that when one derives
from Eq. (91) an expression for ∂φ/∂t, the result con-

tains terms with time-derivatives of ak(t) and a†k(t). So
Fourier transformation of φ and ∂φ/∂t is not sufficient

to determine ak(t) and a†k(t) uniquely in an interacting
theory.

We did not have this complication in a free field theory,
because then the creation and annihilation operators are
time-independent; they provide a way of presenting the
general solution of the equation of motion.

In contrast, at this point in our investigation of an in-
teracting theory, we are simply assuming that there ex-
ists a solution for the state space and for the x-dependent
field operator, without yet specifying what they are. Mo-
tivated by the formulas in the free theory, we defined a
and a† operators, anticipating that they will be useful,
but now they necessarily have time dependence. Since
at this stage of the argument we have not determined
whether or not the operators genuinely destroy and cre-
ate particles, it is best to avoid referring to them as cre-
ation and annihilation operators.

C. The operators a†f (t) and af (t) create and destroy
much more than single particles

The operators a†f (t) and af (t) defined in Eqs. (90a)

and (90b) involve integrals with a single field opera-
tor. Therefore, momentum-space matrix elements, like

〈α; out|a†f (t)|β; in〉, with in- and out-states can be com-

puted from 〈α; out|φ(x)|β; in〉, which is a matrix element
of the field between the same states. This can be com-
puted by applying the reduction method to a Green func-
tion that has one more field than needed for the states
〈α; out| and |β; in〉.

In this section, we compute some examples elements in
low-order perturbation theory.

Since the calculations involve a theorem which is only
proved later in this paper, one should worry whether the
logic is circular. In the first place, this section is purely
motivational: it pinpoints an inadequacy in the definition

p

a†f(t)

q

af(t)

FIG. 5. Notation for vertices for a†f (t) and af (t).

of a†f (t) and af (t) relative to their purposes. It therefore
indicates ways in which the definition can be modified to
be satisfactory. From the point of view of the logic of the
proofs, the section can be safely omitted. A second point
is that independently of the exact form of the reduction
formula, an elementary examination of the asymptotics
of Green functions, such as was done in Sec. V, leads to
a natural conjecture that something like the reduction
formula is valid, even without adequately showing all the
details. This is sufficient to allow motivational calcu-
lations that indicate appropriate definitions for creation
and annihilation operators.

A computation of 〈α; out|a†f (t)|β; in〉 in perturbation
theory involves a Fourier transform of momentum-space
Feynman graphs. The rules for computation of Feynman

graphs for 〈α; out|a†f (t)|β; in〉 need a special vertex for

a†f (t) which has one line connected to the rest of a Feyn-
man graph. Combining the Fourier transform with the
integral in (90a) gives the following rule for the vertex

for a†f (t) in momentum-space:

Vertex(a†f (t)) =

∫
d4p

(2π)4
f̃(p)

Ep + p0

2Ep
e−i(Ep−p0)t.

(92)
Here the convention is that momentum p is flowing into
the rest of the graph, as is appropriate for an operator
that is intended to create a particle. As in Eqs. (89a) and
(89b), Ep is the on-shell energy of a physical particle

in the interacting theory, i.e., Ep =
√

p2 +m2
phys. In

the definition of the vertex factor, there is an integral
over the momentum of the external line, unlike the rules
for normal Green functions. The integral is over all 4-
momenta p, not just over on-shell values. The complete
derivation of Eq. (92) is made by using the usual textbook
methods for deriving Feynman rules for Green functions,
extended simply to deal with the factor of f(x) and the
time-derivatives and the integral over position.

Similarly, the vertex for af (t) has the rule

Vertex(af (t)) =

∫
d4q

(2π)4
f̃∗(q)

Eq + q0

2Eq
ei(Eq−q0)t. (93)

But here the momentum q is defined to flow out of the
rest of the graph, which is an appropriate convention for
an operator intended to destroy something.

The vertices are notated as in Fig. 5.

1. Example: Vacuum to one particle

First consider the vacuum-to-one-particle matrix ele-

ment of a†f (t), i.e., 〈q; out|a†f (t)|0〉 = 〈q|a†f (t)|0〉. We
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p

a†f(t)

q

× (2π)4δ(4)(p− q)

FIG. 6. Green function that gives 〈q|a†f (t)|0〉 after application
of reduction method. Since the graphical 2-point function is
often treated with the momentum-conservation delta function
omitted, its presence has been indicated explicitly.

p

a†f(t)

q1

q2

q3

× (2π)4δ(4)(p− q1 − q2 − q3)

FIG. 7. Lowest-order graph for 〈q1, q2, q3; out|a†f (t)|0〉, with
explicit delta-function for momentum conservation.

obtain this from the full 2-point Green function by ap-

plying the vertex rule for a†f (t) at one end, Fig. 6, and
the LSZ reduction method at the other. This gives

〈q|a†f (t)|0〉 = f̃(q)c∗, (94)

which is the expected result, given the normalization of
the matrix element 〈q|φ(x)|0〉 of the field. In fact, the

result can easily be obtained simply by taking the one-
particle-to-vacuum matrix element of the definition (90a)

of a†f (t), and using (57) for the vacuum-to-one-particle
matrix element of φ. The derivation using the Feynman
graph method merely checks self-consistency of the Feyn-
man rules and the LSZ method.

It can also be checked that the same matrix element of
the conjugated operator, intended to annihilate particles,
is zero:

〈q|af (t)|0〉 = 0. (95)

This follows from the factor Eq + q0 in the rule (93)
for the vertex for af (t), since with an on-shell final-state
particle, q0 = −E−q = −Eq.

2. Example: Vacuum to three particles

In φ4 theory with coupling λ, the lowest order graph

for a†f (t) to create something other than a single particle

is shown in Fig. 7, where the final state has 3 (on-shell)
particles of momenta q1, q2, and q3. From the Feynman
rules, we get

〈q1, q2, q3; out| a†f (t) |0〉 = λf̃(q)
Eq + q0

2Eq

1

(q0)2 − q2 −m2 + iε
e−i(Eq−q0)t + O(λ2)

= λf̃(q)
1

2Eq(q0 − Eq + iε)
e−i(Eq−q0)t + O(λ2). (96)

Here q =
∑3
j=1 qj and q0 =

∑3
j=1Eqj . Note that at the order of perturbation theory to which we are working, the

mass value in the free propagator and the physical particle mass are equal: mphys = m + O(λ), so here we do not
need to be careful whether m or mphys is used in the calculation.

The matrix element in (96) is non-zero. So the calculation shows unambiguously that the operator a†f (t), when
applied to the vacuum, creates more than a single particle. We can quantify by how much, by computing the

corresponding contribution to the squared norm of the state a†f (t)|0〉, i.e., to
∥∥∥a†f (t)|0〉

∥∥∥2

:

1

3!

∫
d̃q1 d̃q2 d̃q3

∣∣∣〈q1, q2, q3; out| a†f (t) |0〉
∣∣∣2 =

λ2

3!

∫
d̃q1 d̃q2 d̃q3 |f̃(q)|2

∣∣∣∣Eq + q0

2Eq

∣∣∣∣2 1

[(q0)2 − q2 −m2]
2 (97)

+ higher order.

(The overall factor of 1/3! is to compensate double count-
ing of indistinguishable states of identical particles.) This
is linearly divergent in the UV. To see this, we notice
that the wave function f̃(q) strongly restricts the total
3-momentum q to finite values. We can integrate freely
over two of the final-state momenta, say q1 and q2. When
these values are large and in different directions, so is the

third. Let Λ be the order of magnitude of these momenta.
Then the propagator denominator is of order Λ2, and the
factor (Eq+q0)/2Eq is of order Λ divided by a finite mass
scale. Thus the power at large Λ is Λ1, and the integral
is linearly divergent as claimed.

As we know from renormalization theory, such UV
power counting corresponds to simple dimensional count-
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ing, and therefore it applies equally to higher order
graphs. At best the UV divergences can be modified
by renormalization-group resummation.

The fact that calculation gives an infinite norm for

a†f (t)|0〉 shows that a†f (t)|0〉 is not in the Hilbert space of
the theory. At best it can be said to be in some bigger
space (not a Hilbert space), which would allow the ma-
nipulations given above to be valid. In any case it is not
a physical state, and vectors in the bigger space could
well have pathological properties compared with those of
physical states in the Hilbert space.

Notice that the extra multiparticle contributions to the

state a†f (t)|0〉 do not disappear when a limit of infinite
time is taken. This is because changing t simply changes
the phase in (96) but not the magnitude, and the same
applies to all higher order contributions. The contribu-
tion to the norm of the state is time-independent. Thus

the limits as t goes to −∞ or +∞ of a†f (t)|0〉 do not exist.
Such limits would be called strong limits, if they existed.

It is important that the existence of a divergence in
the state is distinct from the existence of the extra mul-
tiparticle contributions. This can be seen be going to
theory in a different space-time dimension. In a space-
time dimension n the degree of divergence of the natural
generalization of (97) is 2n − 7. We get convergence if
n < 3.5. Thus in the integer dimensions 3 and 2 in which
the theory is super-renormalizable, there is no UV di-
vergence in (97), but the result remains non-zero. The
existence of divergence in the physical case n = 4 merely
dramatizes the issue that the putative creation operator
applied to the vacuum creates more than the intended
single particle. That issue is unchanged when there is no
UV divergence.

3. Annihilation operator creates particles

Similarly, although the one-particle-to-vacuum ma-
trix element of the would-be annihilation operator
af (t) is zero, the matrix elements to multi-particle
states are non-zero. For example, we can calculate
〈q1, q2, q3; out|af (t)|0〉. The only differences compared

with the corresponding matrix element of a†f (t) are: A

change of f̃(q) to its complex conjugate f̃∗(q); a complex
conjugation of the t-dependent phase; a replacement of
q0 by −∑3

j=1Eqj and of q by −∑3
j=1 qj . The result

remains non-zero.

4. Generalizations

Many more examples can readily constructed.

Similar considerations also apply if more than one a†f (t)
operator is applied to the vacuum, with the intent of
creating an initial state consisting of two or more par-
ticles. However, note that if more than one operator is

applied, as in a†f1(t2)a†f2(t1)|0〉, the fields in the operator

product a†f1(t2)a†f2(t1) are simply multiplied, without a
time-ordering operations. The use of standard Feynman

diagram methods applies to a†f1(t2)a†f2(t1)|0〉 if t2 > t1.

5. Weak limit v. strong limit

Suppose instead of a state of three final-state particles
of definite momentum, we used a normalizable state,

|G; out〉 def
=

∫
d̃q1 d̃q2 d̃q3 |q1, q2, q3; out〉 G̃(q1, q2, q3).

(98)
Then Eq. (96) would be replaced by

〈G; out| a†f (t) |0〉 = λ

∫
d̃q1 d̃q2 d̃q3 G̃

∗(q1, q2, q3)×

× f̃(q)
1

2Eq(q0 − Eq + iε)
e−i(Eq−q0)t + O(λ2), (99)

still with q =
∑3
j=1 qj and q0 =

∑3
j=1Eqj . The oscil-

lations in the integrand imply that when t → −∞ with
G fixed, the matrix element rapidly goes to zero. This is

an example of the property that a†f (t) converges weakly
to a creation operator of a single particle. But we have
already seen that the strong limit, i.e., the limit of the

state a†f (t)|0〉, does not exist.
With a normalizable state instead of particles of defi-

nite momenta, how negative t needs to be for the matrix
element to be close to the asymptote depends on the wave
functions G̃ and f̃ .

As a physical illustration, suppose G̃ is real, positive,
and tightly peaked around a particular momentum for
each particle. Then by the results of Sec. VII, it cor-
responds to a state of three particles of almost definite
momenta that are localized quite close to the origin of
spatial coordinates at time t = 0. (We could even insert
a qj-dependent phase to separate the particles a bit.)

We also choose the wave function in a†f to be similarly
localized.

For this case, the matrix element (99) rapidly decreases
to zero as t is moved away from zero time.

Now change the wave function by a phase as follows:

G̃(q1, q2, q3) 7→ G̃(q1, q2, q3) e−i(Eq−q0)t1 , (100)

with t1 being some very large negative value. This corre-
sponds to a state that at time t1 has the three particles
spatially localized to the same region as where the wave
function f(t1,x) is localized at the same time.

At t = 0 the matrix element in (99) is very small be-
cause of the rapid oscillations in the integrand that are
now in the wave function. However, when the time in the
intended creation operator is set to t1, i.e., t = t1, the
oscillations are canceled, and we get a large value. It is
only when t is significantly more negative than t1 that the
limiting behavior for a creation of an one-particle initial
state is approached.
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Since t1 is arbitrary, we cannot provide a single time

below which the state a†f (t)|0〉 itself is close to zero. We
have thus seen the non-existence of the strong limit with
calculations that only use normalizable states. Obviously
the calculation with particles of definite momenta shows
the same result more simply. But the analysis with nor-
malizable states works purely within the Hilbert space of
states and lends itself to physical interpretation.

6. Remarks

The line of argument just given shows that even though

the operator a†f (t) creates a lot of extra particles, they are
asymptotically in a different region of space time than the
intended single particle. More explicitly, observe that the
coordinate-space wave function f(x) is concentrated near
the classical trajectory of the particle. When t → −∞,
its position is infinitely far away from the origin. Now,
for graphs with multi-particle final states, the propagator

attached to the vertex for a†f (t) is never close to its pole.
Thus the invariant distances involved between the ends
of the propagator are of order 1/m or smaller. Hence
when t → −∞, the production region of the particles is
infinitely far away, as illustrated in Fig. 8. Thus they

essentially all avoid hitting a finite sized detector sur-
rounding the intended collision region in a scattering ex-
periment. This is a fairly physical reason why the large

extra contributions to the initial state created by a†f (t) do
not contribute in the LSZ proof to calculations of the S-
matrix itself, despite the delicate mathematical ground-
ing caused by the UV divergence in the state vector.

A more abstract mathematical way of analyzing this
situation is to observe that as t→ ±∞, the phase factors
in Eqs. (92) and (93) oscillate infinitely rapidly except
when the momentum p or q corresponds to the intended
single-particle state. If the vertices appear inside a quan-
tity that has a suitable integral over momentum, then the
infinitely rapid oscillations cause a corresponding vanish-
ing of the corresponding contribution in the integral. The
oscillations mathematically implement the physical state-
ment that the extra particles created or destroyed by the
operators are infinitely far from the scattering region.

However, we may not always want to use a limit of
infinite time. Notably, if we wish to calculate scattering
with an initial particle that is unstable (but perhaps long

lived), then it is natural to use an operator like a†f (t) to
create the particle at a finite time that corresponds to the
experimental source of the particle. Then the extra par-

ticles created by a†f (t) can easily be in an experimentally
accessible location.

D. General analysis of divergence from spectral representation

The UV divergence in ‖a†f (t)|0〉‖2 was found in an illustrative calculation in Sec. IX C with the use of the reduction
formula. We will now obtain a general result for this quantity from the spectral representation, whose properties were

summarized in Sec. VI. From the representation Eq. (54) for the 2-field correlator, and the definition (90a) of a†f (t),
it follows that

‖a†f (t)|0〉‖2 = 〈0|af (t)a†f (t)|0〉

=

∫ ∞
0

ds ρ(s)

∫
d̃p d̃q

∫
d3k

(2π)32
√
k + s

f̃(p)∗f̃(q)

∫
d3x d3y[

eiEpx
0−ip·x

←−→
∂

∂x0
e−i
√
k+sx0+ik·x

][
e−iEqy

0+iq·x
←−→
∂

∂y0
ei
√
k+sy0−ik·y

]
, (101)

with x0 and y0 being set to t after the derivatives are taken. Straightforward manipulations lead to

‖a†f (t)|0〉‖2 =

∫
d̃p |f̃(p)|2

∫ ∞
0

ds ρ(s)

(√
p2 + s+

√
p2 +m2

phys

)2

4
√

p2 + s
√
p2 +m2

phys

. (102)

Now the spectral function can be found calculationally
from analyzing the propagator and self-energy graphs.
At large p2, the propagator Ĝ2(p2) is known to behave
like 1/p2 times logarithms, order-by-order in perturba-
tion theory. Hence from the spectral representation (56)

for Ĝ2(p2), the spectral function ρ(s) behaves like 1/s
times logarithms.

In Eq. (102), the wave function limits p to finite values,
while at large s the last factor grows like

√
s. It follows

that order-by-order in perturbation theory, ‖a†f (t)|0〉‖2
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FIG. 8. (a) Illustrating trajectories and hence spatial location of state components with extra particles that are created by

a†f (t) when |t| is large and negative. (b) The trajectories of the single particle corresponding to the intended single-particle

state component created by the same operator. In both cases, the dot indicates where the particle(s) were created.

has the same kind of power divergence that we found in
an explicit calculation. The state’s norm can only be
finite if the true non-perturbative ρ(s) falls sufficiently
more rapidly than 1/s3/2.

The operator a†f (t) was defined by an integral over the
field and its time derivative at fixed time. Therefore the
UV divergence in ‖a†f (t)|0〉‖2 shows that there is a failure
of localization on a quantization surface of fixed time.
The presence or absence of the divergence depends on
the dynamics of the theory. Localization does work in a
theory that is sufficiently convergent in the UV, e.g., in a
free-field theory, or in a sufficiently super-renormalizable
theory. The culprit is not the field itself, but its time
derivative. The time derivative gives two factors of q0

in the integrand in (97), and without those factors the
integral would be convergent. See Ref. [32] for a further
examination of the localization properties of fields on a
quantization surface, in the free-field case, and for an
examination of interesting differences between equal-time
and light-front quantization.

In a theory where there is no UV divergence in a†f (t)|0〉,
Eq. (102) nonperturbatively quantifies the multi-particle
contribution to the state.

E. Modified creation and annihilation operators

What allowed the operators a†f (t) and af (t) to cre-
ate and annihilate states other than the intended single-

particle states was the use of the field operator at fixed
time. This gave an integral over all energy in the
momentum-space version, as exhibited in the Feynman
rules (92) and (93).

A simple way to enforce the single-particle condition
is to restrict the energy explicitly. Let us implement this
by smoothly averaging over a range ∆t of time with an
averaging function F (t′ − t,∆t), and then taking ∆t to
infinity. We define the averaged operator by

A†f (t; ∆t)
def
=

1

c∗

∫
dt′ F (t′ − t,∆t) a†f (t′). (103)

The averaging function is required to be real, non-
negative, and to integrate to unity:∫

dt′ F (t′ − t,∆t) = 1. (104)

In the definition (103), the factor 1/c∗ is to normalize

A†f (t; ∆t) so that, as we will see, the one-particle state
that it creates has the standard normalization. A suitable
averaging function is a Gaussian:

F (t′ − t,∆t) =
e−(t′−t)2/(∆t)2

√
π∆t

. (105)

A number of alternative forms may be written for the

operator A†f (t; ∆t). Let x′
µ

= (t′,x′). Then

A†f (t; ∆t) =
−i
c∗

∫
d4x′ F (t′ − t,∆t)

[
f(x′)

←→
∂

∂t′
φ(x′)

]

=
i

c∗

∫
d4x′ φ(x′)

[
∂F (t′ − t,∆t)

∂t′
f(x′) + 2F (t′ − t,∆t)∂f(x′)

∂t′

]
=

1

c∗

∫
d4p

(2π)4
φ̃(p) f̃(p)

Ep + p0

2Ep
e−i(Ep−p0)t F̃ (p0 − Ep,∆t). (106)

In the second line, A†f (t; ∆t) is written as a simple integral of the field with a function. It is probably best to treat

that second line as the actual definition of A†f (t; ∆t), since it avoids any difficulties about localization of fields on
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a quantization surface. The previous manipulations can then be regarded as simply motivational, to indicate why

that particular formula is used. Our earlier results showing that the operators a†f (t) fail to exist as operators on the

space of physical normalizable states show that the steps leading to the second line of Eq. (106) are on dangerous
mathematical ground.

In the last line we used the Fourier transform of the field,

φ(x) =

∫
d4p

(2π)4
φ̃(p) eip·x, (107)

to write a momentum-space expression, with the Fourier transform of F defined by

F̃ (δE,∆t) =

∫
dt′ eiδE(t′−t)F (t′ − t,∆t). (108)

In the case of the Gaussian, the Fourier-transformed averaging function is

F̃ (δE,∆t) = e−δE
2∆t2/4. (F Gaussian) (109)

From the last line of Eq. (106) follows the Feynman rule for the vertex corresponding to the operator A†f (t; ∆t). It

is a simple generalization of (92), containing an extra factor F̃ (p0 − Ep,∆t):

Vertex(A†f (t; ∆t)) =

∫
d4p

(2π)4
f̃(p)

Ep + p0

2Ep
e−i(Ep−p0)t F̃ (p0 − Ep,∆t). (110)

It is the new factor F̃ that enforces the restriction that in the ∆t→∞ limit, A†f (t; ∆t) creates a single particle and

nothing else. That is, when we take the limit of infinite averaging time, ∆t→∞, F̃ goes to zero unless δE = 0, i.e.,
unless the on-shell condition p0 = Ep is obeyed.

Formulas for the conjugate operator Af (t; ∆t) are:

Af (t; ∆t) =
−i
c

∫
d4x′ φ(x′)

[
∂F (t′ − t,∆t)

∂t′
f∗(x′) + 2F (t′ − t,∆t)∂f

∗(x′)

∂t′

]
=

1

c

∫
d4p

(2π)4
φ̃(−p) f̃∗(p)

Ep + p0

2Ep
ei(Ep−p0)t F̃ ∗(p0 − Ep,∆t), (111)

and the corresponding vertex is

Vertex(Af (t; ∆t)) =

∫
d4q

(2π)4
f̃∗(q)

Eq + q0

2Eq
ei(Eq−q0)t F̃ ∗(q0 − Eq,∆t). (112)

When these formulas are used in calculations, it should

be remembered that for the A†f vertex the momentum p

flows into the rest of the graph from A†f vertex, whereas
the opposite is true for the momentum q at the Af vertex,
as explained after Eq. (93).

Furthermore, a Green function is defined using a time-
ordered product of fields. So except in asymptotic situ-
ations, e.g., in matrix elements with in- and out-states,
there is a mismatch between a Green function with the
vertex implied by Eq. (106) and an actual matrix element
of the operator.

Finally, we need operators that create and destroy par-
ticles in the in- and out-states, as the relevant limits. The

creation operators are defined as

A†f ; in
def
= lim

t→−∞
∆t→∞

∆t/|t|→0

A†f (t; ∆t), (113)

A†f ; out
def
= lim

t→+∞
∆t→∞

∆t/|t|→0

A†f (t; ∆t), (114)

with the annihilation operators defined as the hermitian
conjugates. The limit ∆t → ∞ ensures that the created
and destroyed particles are just the intended single par-
ticles, because of the factor F̃ (p0 −Ep,∆t) in the vertex

for A†f (t; ∆t). The limit t → ±∞ is needed to corre-
spond to the application to the asymptotics of scattering
processes, as usual. To ensure that the range of time in-
volved in creating or destroying incoming and outgoing
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particles is much less than the time between the region
of scattering and the creation and destruction of asymp-
totic particles, we require that in the infinite-time limits
t and ∆t are taken such that ∆t/|t| → 0.

These time scales correspond to experimental reality,
where the times involved are short of achieved the strict
mathematical limits.

The definitions (113) and (114) are as strong limits.
Given the known result that the corresponding defini-

tions for the elementary creation operators a†f (t) are only

weak limits, it is important to verify explicitly that the
strong limits exist.

Having defined the operators A†f (t; ∆t) and Af (t; ∆t),
and their limits as t → ±∞, it is necessary to verify
that they have the properties that their definitions were
intended to have and that they do not have the deficien-
cies illustrated in Sec. IX C for the LSZ versions of the
operators. To avoid a circularity of the logic, we will
postpone this analysis until after the proof of the reduc-
tion formula is completed. The results are found in Sec.
XII below.

X. SIMPLE MATRIX ELEMENTS OF ANNIHILATION AND CREATION OPERATORS

In this section we obtain some of the most basic properties of the annihilation and creation operators. These involve
the action of one operator on the vacuum or the vacuum expectation value of a product of two operators. These
can be analyzed simply and non-perturbatively in the exact theory with the aid of the spectral representation; the
analysis does not need the reduction formula. Not only are the results of interest in their own right, but they will be
useful ingredients for work in later sections.

A. One operator on vacuum

From the vertex formula (110) and translation invariance of 〈0|φ(x)|0〉, it follows that the vacuum expectation value
of one operator is

〈0|A†f (t; ∆t)|0〉 =
1

2c∗
〈0|φ(0)|0〉f̃(0) e−imphyst F̃ (−mphys,∆t). (115)

This goes to zero as ∆t → ∞, because F̃ (−mphys) does, and this happens independently of t. In particular, we can
take t to ±∞ more rapidly than ∆t, as is needed for the in- and out-operators. Thus

lim
∆t→∞

〈0|A†f (t; ∆t)|0〉 = 〈0|A†f ; in|0〉 = 〈0|A†f ; out|0〉 = 0. (116)

From the vertex formula (110) and the known one-particle-to-vacuum matrix element of 〈p|φ(x)|0〉 it follows that

the A†f operators have the desired one-particle-to-vacuum matrix elements, independently of t and ∆t. Hence

〈p|A†f (t; ∆t)|0〉 = 〈p|A†f ; in|0〉 = 〈p|A†f ; out|0〉 = f̃(p). (117)

Similar we have the following matrix elements of an annihilation operator with a normalizable one-particle state:

〈0|Af (t; ∆t)|g〉 = 〈0|Af ; in|g〉 = 〈0|Af ; out|g〉 =

∫
d̃p f̃∗(p)g̃(p). (118)

Matrix elements of a creation operator between a multi-particle state and the vacuum vanish in the ∆t→∞ limit.
To see this, we follow the pattern used in the example calculations, with basis momentum states:

〈q1, . . . , qn; in|A†f (t; ∆t) |0〉 = (time-independent) e−i(Eq−q0)t F̃ (q0 − Eq,∆t), (119)

where q0 and q are the total energy and 3-momentum of the n-particle state. As ∆t→∞, this vanishes, because the

F̃ factor vanishes. We now wish to show that the strong limit of the state A†f (t; ∆t)|0〉 as ∆t→∞ is the single-particle

state |f〉. From the already-calculated one-particle component in A†f (t; ∆t)|0〉 it follows that the size of the rest of
the state is given by∥∥∥A†f (t; ∆t)|0〉 − |f〉

∥∥∥2

=
∑∫

except
single

particle

dX
∣∣∣〈X; out|A†f (t; ∆t)|0〉

∣∣∣2 = (time-independent)×
∣∣∣F̃ (q0 − Eq,∆t)

∣∣∣2 , (120)
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where the integral over X is a sum and integral over basis states for all but the single-particle states. The desired
strong limit follows, plus a result for ∆t→∞ independently of t:

lim
∆t→∞

A†f (t; ∆t)|0〉 = A†f ; in|0〉 = A†f ; out|0〉 = |f〉. (121)

Here, as usual |f〉 = |f ; in〉 = |f ; out〉 =
∫

d̃p |p〉 f̃(p).
In textbooks it is very common to use the interaction picture, and to employ three kinds of basis state: a free basis,

and in-basis, and an out-basis. Therefore it is necessary to emphasize that in (121) and elsewhere in this paper, the
basis states are strictly in the in- or out-basis, unless specifically indicated otherwise. Haag’s theorem guarantees that
the state space spanned by the in- and out-bases in an interacting theory is orthogonal to the corresponding state
space of the free theory.

Very similarly, we find that the operator lim∆t→∞Af (t; ∆t) annihilates the vacuum:

lim
∆t→∞

Af (t; ∆t)|0〉 = 0, (122)

and equally for the in- and out-versions of the annihilation operators.

None of the results above should be a surprise. The definition of A†f was specifically designed to make them valid.
Nevertheless, it is useful to show directly from the definitions that in the most elementary cases the properties are
valid.

B. Vacuum matrix elements of two operators

Consider now the vacuum expectation value of the product of two A†f (t,∆t) operators: 〈0|A†g(t2; ∆t2)A†g(t1; ∆t1)|0〉.
In view of later uses of results from this section, we will start with independently chosen values of the parameters tj
and ∆tj . From the definition (106) of the operators and the spectral representation (54), standard manipulations give

〈0|A†f (t2; ∆t2)A†g(t1; ∆t1)|0〉 =
1

c∗2

∫
d4p

(2π)3
ρ(p2)θ(p0) g̃(−p) f̃(p)

E−p − p0

2E−p

Ep + p0

2Ep
×

× e−i(E−p+p0)t2 e−i(Ep−p0)t1 F̃ (−p0 − E−p,∆t2) F̃ (p0 − Ep,∆t1)

=
1

c∗2

∫
d4p

(2π)3
ρ(p2)θ(p0) g̃(−p) f̃(p)

p2 −m2
phys

4E2
p

×

× e−i(Ep+p0)t2 e−i(Ep−p0)t1 F̃ (−p0 − Ep,∆t2) F̃ (p0 − Ep,∆t1) (123)

In a limit that ∆t2 →∞, the first F̃ factor vanishes, since p0 is always positive. Hence

lim
∆t2→∞

〈0|A†g(t2; ∆t2)A†f (t1; ∆t1)|0〉 = 0, (124)

independently of whether any of the other parameters (tj , ∆t1) are held fixed or are taken to infinity. Hence.

〈0|A†g; inA
†
f ; in|0〉 = 〈0|A†g; outA

†
f ; out|0〉 = 0. (125)

Note the lack of time dependence in (124), which is specific to the case where the vacuum expectation value is of two
operators (or fewer).

The case of one creation and one annihilation operator is nonzero:

〈0|Ag(t2; ∆t2)A†f (t1; ∆t1)|0〉

=
1

|c|2
∫

d4p

(2π)3
ρ(p2)θ(p0) g̃∗(p) f̃(p)

(
Ep + p0

2Ep

)2

ei(Ep−p0)(t2−t1) F̃ ∗(p0 − Ep,∆t2) F̃ (p0 − Ep,∆t1). (126)

When one or both ∆tj →∞, the F̃ factors give zero for the continuum contribution from ρ(p2), i.e., from p2 > m2
phys,

and leave only the contribution from the single particle intermediate state, with its delta-function in ρ(p2). This is
again independent of what is done with tj . So

lim
∆t1

and/or
∆t2→∞

〈0|Ag(t2; ∆t2)A†f (t1; ∆t1)|0〉 =

∫
d̃p g̃∗(p) f̃(p), (127)
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which is the same time-independent formula as in the free theory. The result is saturated by one-particle states
between the two operators. Exchanging the two operators gives zero:

lim
∆t1

and/or
∆t2→∞

〈0|A†f (t1; ∆t1)Ag(t2; ∆t2)|0〉 = 0, (128)

and hence the commutator’s vacuum-expectation value is the standard one

lim
∆t1

and/or
∆t2→∞

〈0|
[
Ag(t2; ∆t2), A†f (t1; ∆t1)

]
|0〉 =

∫
d̃p g̃∗(p) f̃(p). (129)

This implies the same equations for the in and out versions of these operators. They are then compatible with the
standard commutation relations for the in-operators, i.e.,[

A†g; in, A
†
f ; in

]
= [Ag; in, Af ; in] = 0,

[
Ag; in, A

†
f ; in

]
=

∫
d̃p g̃∗(p) f̃(p), (130)

and the same for the out-operators. But an actual proof needs more techniques than just the spectral representation,
and will have to wait until we derive the reduction formula.

XI. DERIVATION OF REDUCTION FORMULA

In this section, we find how to express 〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉 in terms of momentum-space Green functions
and thence derive the reduction formula for the S-matrix. To make a simplification in the notation and the analysis
of connected components, we restrict to the standard experimentally relevant situation of two incoming particles, i.e.,
n′ = 2. The generalization to other values of n′ is elementary.

The overall starting point consists of the assertions that we have a relativistic QFT obeying standard properties,
that the Green functions exist, and that the full propagator has a pole at a nonzero mass. We also assume that
the momentum-space Green functions have the analyticity properties attributed to them on the basis of Feynman
perturbation theory. All of these properties primarily concern the off-shell Green functions.

We will use the operators defined in Sec. IX E for creating in- and out-states of specified particle content.
The derivation of the reduction formula has the following steps:

1. Given a particular set of momentum-space wave functions f1, . . . , define a corresponding “in state” by applying

the relevant product of A†f ; in operators to the vacuum, thereby constructing a state with a specified momentum
content in the far past. Similarly, construct an out state with the specified content in the far future. The gives a
construction of the states used in 〈g1, . . . , gn; out|f1, f2; in〉. The aim of the following manipulations is to obtain
a useful formula for the S-matrix, which appears on the right-hand side of Eq. (39).

2. Apply the definitions of the A†f ; in and A†f ; out operators. The result is a limit of the vacuum-expectation value
of a product of field operators integrated over space-time, multiplied by wave functions and averaging functions.

3. Show that in the relevant infinite-time limit, the product of field operators can be replaced by a time-ordered
product, i.e., an ordinary Green function.

4. By Fourier transformation, express the result in terms of the momentum-space Green functions.

5. Show that in the specified limits of infinite time, the result is of the usual form of momentum-space wave functions
integrated with a quantity Sq1,...,qn;p1,p2

, as on the right-hand side of Eq. (39), and that Sq1,...,qn;p1,p2
has the

form given in the reduction formula, (75) or (76), for the connected term and related formulas for disconnected
terms.

The first two steps are simply an application of our defined creation and annihilation operators, with the use of
the assertion that the limits involved in their definition are strong limits. The remaining steps consist of essentially
mechanical steps to calculate the inner product in terms of momentum-space Green functions, and hence in terms
of quantities accessible to Feynman-graph calculations. They also verify that the inner product has the expected
structure that corresponds to the existence of an S-matrix.

In addition, we will verify some properties of the states and operators that are needed to show that the expected
properties used in scattering theory actually do hold.
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A. Construction of asymptotic states and inner product of in and out states

We have defined operators A†f ; in and A†f ; out that are intended to create asymptotic particles when applied to the
vacuum. For the in-state we therefore define a generic in-state by

|f1, . . . , fn′ ; in〉 def
= A†f1; in . . . A

†
fn′ ; in |0〉 =

n′∏
j=1

A†fj ; in |0〉. (131)

For each wave function, define the following quantity

f̂j(xj ; tj,−,∆tj,−) =
∂F (x0

j − tj,−,∆tj,−)

∂x0
j

f(xj) + 2F (x0
j − tj,−,∆tj,−)

∂f(xj)

∂x0
j

. (132)

With modified variable names, this is the combination of wave function and averaging functions that appears in the

second line of Eq. (106) which gives formulas for what with our modified variable names is A†f (tj,−,∆tj,−). In view
of how we will use these formula, each of the t and ∆t parameters is treated as distinct. Moreover, they are given a
label − to distinguish them from corresponding parameters for final-state particles.

Then the infinite-time limits for the A†fj ; in operators give

|f1, . . . , fn′ ; in〉 =
1

c∗n
′ lim

infinite
past
time

∫ n′∏
j=1

d4xj

n′∏
j=1

f̂j(xj ; tj,−,∆tj,−)
∏n′

j=1 φ(xj) |0〉. (133)

The exact specification of the product of fields and the limits so that they correspond to the right-hand side of Eq.
(131) is as follows: The order of the product of the field operators is specified to be φ(x1) . . . φ(xn′). We have n′

instances of the application of the definition (113), each needing its own value of t and ∆t. The infinite-time limit
is be such that for each j, tj,− → −∞, ∆tj,− → ∞, and ∆tj,−/|tj,−| → 0. Moreover, given the order in which the
creation operators are applied, the individual times are ordered: t1,− > · · · > tn′,− and the separation of neighboring
tj,− is much bigger than the ∆tj,−. In fact, in the infinite-time limit the operators commute, and the order in which
they are applied is irrelevant, but we will only establish that later.

Now the averaging functions F restrict the range of integration over the time component x0
j of each xj to be

dominantly within ∆tj,− of the corresponding central value of time, i.e., tj,−. Therefore, except for contributions that
vanish in the infinite-time limit, the product of operators can be replaced by the time-ordered product, i.e.,

|f1, . . . , fn′ ; in〉 =
1

c∗n
′ lim

infinite
past
time

∫ n′∏
j=1

d4xj

n′∏
j=1

f̂j(xj ; tj,−,∆tj,−)T
∏n′

j=1 φ(xj) |0〉. (134)

For a generic out-state, exactly the same formula applies except that it is in the limit of infinite time is in the future
and that the ordering is anti-time ordering. Taking the Hermitian conjugate, as needed for the overlap of an out- and
an in-state, again results in a time-ordered product:

〈g1, . . . , gn; out| = 1

cn
lim

infinite
future
time

∫ n∏
k=1

d4yk

n∏
k=1

f̂j(yk; tk,+,∆tk,+) 〈0|T ∏n
k=1 φ(yk). (135)

Therefore

〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉 =
1

cnc∗n
′ lim

infinite
time

∫ n′∏
j=1

d4xj

n∏
k=1

d4yk ×

×
[

n∏
k=1

ĝk(yk; tk,+,∆tk,+)

]∗ n′∏
j=1

f̂j(xj ; tj,−,∆tj,−) 〈0|T ∏n
k=1 φ(yk)

∏n′

j=1 φ(xj) |0〉. (136)

The limit of infinite time is in the future for the tk,+ and in the past for the tj,−. Since the times of yk are localized
to future times and the xj to past times, we were able to replace the separate time-orderings of the φ(yk) and of the
φ(xj) by time-ordering of the whole operator product. Thus the last factor is a normal Green function of the theory.
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Now the results of Sec. VII D show that for a coordinate-space wave function the regions of slowest decrease in
time, 1/|t|3/2, correspond to the velocities for the region where the momentum-space wave function is non-zero. These
regions give the dominant contributions in the integrations over positions in (136). These therefore correspond to
the trajectories of the classical particles corresponding to the wave functions, as expected. Other regions are at least
power suppressed.

B. Localization; momentum

The states created by the A†f ; in operator are localized around the asymptotic classical trajectory, because of the

locations where the field operator φ(t,x) is dominantly weighted by the wave function factor. Similar remarks apply

for A†f ; out.
Furthermore the construction of the operators was designed to produce particle states with specified momentum

content, with the momenta on-shell. It is useful to verify this explicitly. We wish to capture in properties of
normalizable states the idea that the states |p1, . . . ,pn; in〉 and |q1, . . . , qn; out〉 are eigenstates of 4-momentum with
the eigenvalues being the sum over particle momenta.

The momentum operators Pµ are defined as usual from an integral over the appropriate components of the Noether
currents for translations, which currents are the energy-momentum tensor Tµν . Thus

Pµ =

∫
d3xT 0µ(t,x). (137)

To avoid an infinite-volume divergence due to a uniform energy density in the vacuum, we define the energy-momentum
tensor to have its vacuum-expectation value subtracted, and then the 4-momentum of the vacuum is zero.

The result to be proved is that

Pµ|f1, . . . , fn; in〉 = |fP,µ1 , . . . , fn; in〉+ |f1, f
P,µ
2 , . . . , fn; in〉+ . . . , (138)

where fP,µj are functions defined by

fP,µj (p) = pµfj(p). (139)

For more general states, as in Sec. IV D, if |f ; in〉 has momentum-space wave functions fn(p1, . . . ,pn), then Pµ|f ; in〉
has wave functions obtained by the replacement

fn(p1, . . . ,pn) 7→ fn(p1, . . . ,pn)

n∑
j=1

pµj . (140)

Similar results hold for |g1, . . . , gn; out〉 and |g; out〉.
To derive (138), we first obtain the commutator of Pµ with A†f ; in, by applying the commutator with the field,

[Pµ, φ(x)] = −i ∂φ
∂xµ

, (141)

in the formula for A†f (t; ∆t) that is in the second line of (106). An integration by parts gives

[Pµ, A†f (t; ∆t)] = − 1

c∗

∫
d4x′ φ(x′)

{
∂F (t′ − t,∆t)

∂t′
∂f(x′)

∂x′µ
+ 2F (t′ − t,∆t) ∂

2f(x′)

∂x′µ∂t
′

+δ0
µ

[
∂2F (t′ − t,∆t)

∂t′2
f(x′) + 2

∂F (t′ − t,∆t)
∂t′

∂∂f(x′)

∂t′

]}
. (142)

Each derivative of F with respect to t′ gives an extra factor of 1/∆t. Thus in the limit ∆t→∞, all the contributions
with derivatives of F vanish, leaving

[Pµ, A†f (t;∞)] = − 2

c∗

∫
d4x′ φ(x′)F (t′ − t,∆t)∂

2f(x′)

∂x′µ∂t
′ . (143)
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From the expression (59) of a coordinate-space wave function in terms of a momentum-space wave function, we get

∂f(x)

∂xµ
= −i

∫
d̃p pµf̃(p) e−ip·x

= −i
∫

d̃p f̃P,µ(p) e−iEpt+ip·x. (144)

Hence

[Pµ, A†f (t;∞)] = A†
fP,µ

(t;∞). (145)

That is, the commutator of Pµ with A†f (t;∞) gives a creation operator with the wave function f̃(p) replaced by

pµf̃(p).

The same result applies when t is taken to −∞, i.e., to A†f ; in.

Given the definition (131) of |f1, . . . , fn; in〉 in terms of products of A†fj ; in operators applied to the vacuum, the

desired result (138) immediately follows for the action of Pµ on |f1, . . . , fn; in〉. The corresponding result for more
general non-product states |f ; in〉 follows, since such states can be obtained as linear combinations of product states,
with possible limit operations. The same arguments and results apply to the out-states |g1, . . . , gn; out〉 and |g; out〉.

C. Conversion to momentum space

We now return to the matrix element between out and in states in (136), and express it in terms of momentum-space
Green functions. For this we use the definition (7) of momentum-space Green functions, and the last lines of Eqs.

(106) and (111), which give momentum-space versions of the definitions of Ag and A†f operators. The result is:

〈g1, . . . , gn; out|f1, . . . , fn′ ; in〉 =
1

cnc∗n
′ lim

infinite
time

∫ n∏
k=1

d̃qk

n′∏
j=1

d̃pj

[
n∏
k=1

g̃k(qk)

]∗ n′∏
j=1

f̃j(pj)

∫ n∏
k=1

dq0
k

2π

n′∏
j=1

dp0
j

2π
×

×
n∏
k=1

[
(Eqk + q0

k) ei(Eqk
−q0k)tk,+ F̃ ∗(q0

k − Eqk ,∆tk,+)
] n′∏
j=1

[
(Epj + p0

j ) e
−i(Epj

−p0j )tj,− F̃ (p0
j − Epj ,∆tj,−)

]
×

× Gn+n′(−q1, . . . ,−qn, p1, . . . , pn′). (146)

As intended, the F̃ factors restrict the energy components of the external momenta (pj and qk) of the Green function
to be within order 1/∆tj,± of their on-shell values, so that the momenta are exactly on-shell in the limit ∆tj,± →∞.
The phase factors involving tj,− and tk,+ give rapid oscillations as functions of the energy variables p0

j and q0
k. They

would give a strong suppression in the infinite-time limit were it not for the mass-shell poles on external lines of the
Green function. It is the combination of the oscillations and the poles that will result in a non-zero limit.

The Green function Gn+n′ can be decomposed into a sum of terms each with different numbers of connected com-
ponents, with a momentum-conservation delta function for each component. To reduce the combinatorial complexity
of the analysis of the different cases, we now restrict to the standard case of two incoming particles, n′ = 2.

The possible cases for connected components of Gn+2 are

• A fully connected term. This will give the expected 2→ n scattering term.

• When the number of outgoing particles is n = 2, there are terms which connect each of the incoming lines to
one of the outgoing lines, one with p1 to q1, p2 to q2, and one with p1 to q2, p2 to q1. These will give the
no-scattering term, i.e., the contribution corresponding to the δβα term in Eq. (41).

• All the remaining cases have at least one component that connects only incoming to incoming lines, or only out-
going to outgoing lines, or one single incoming particle to two or more outgoing particles. For these components,
the energy conservation condition cannot be satisfied in the on-shell limit, given that the particles are asymptotic
particles that are stable by definition, and that we have restricted attention to the case that all the particles are
massive. Hence all these disconnected terms result in a zero contribution to 〈g1, . . . , gn; out|f1, f2; in〉. These

restrictions are imposed by the F̃ functions in the ∆tj,± →∞ limit.

If we changed the number of incoming particles from 2 to a higher value n′ > 2, there would be further possibilities.
Their treatment merely involves a mechanical extension from the case of n′ = 2, but with combinatorial complications.
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D. Fully connected term

To analyze the fully connected term in the Green function G̃n+2, we factor it as in Eq. (74) into an amputated

part, a product of external propagators, and a delta function for momentum conservation. In the limit we use, the F̃
factors restrict the energies to be within order 1/∆tj,± of the on-shell values, with the relevant instance of ∆tj,±.

Hence we can replace the values of energies by on-shell energies in every factor in (146) that is smooth as a function
of the energies. That is, wherever possible the momenta p1, p2, q1, . . . , qn are replaced by on-shell values. The factors
where this cannot be done have rapid variation near the on-shell position. These factors are the poles in the external

propagators, the factors of e−i(Epj
−p0j )t− F̃ (p0

j − Epj ,∆t) for the incoming lines, the corresponding factors for the
outgoing line, and the delta function for energy conservation.

Were it not for the delta function, there would be independent integrals over n+ 2 energy variables, and after the
approximations, each integral would have the form

h(t0,∆t) =

∫
dδE

2π
e−iδE t0 F̃ (δE,∆t)

i

δE + iε
. (147)

Here the variable of integration, δE, is chosen to be the deviation of an energy from an on-shell value, i.e., p0
j − Epj

or q0
k − Eqk . The δE + iε denominator is from a propagator pole. The parameters are t0, which is one of −tj,− or

tk,+, and ∆t, which is one of ∆tj,− or ∆tj,+. This integral goes to unity in the relevant infinite-time limit:

lim
t0→∞
∆t→∞

∆t/t0→0

h(t0,∆t) = 1. (148)

This can be proved by shifting the contour of integration from the real axis slightly into the lower-half plane, with an
imaginary part for δE of order −1/∆t. The deformation crosses the pole, and the residue contribution gives unity.

On the deformed contour, the deformation is small enough not to change the order of magnitude of the F̃ factor.
But the exponential factor gives a suppression of by a factor of order e−t0/∆t, which goes to zero in the stated limit.
There remains the unit term from the pole’s residue.

However, the delta function constrains the energy integrals, which therefore appear not to be independent. Nev-
ertheless, as we will see, it turns out to be correct to replace the energies in the delta function δ

(∑
p0
j −

∑
q0
k

)
by

on-shell values, as in δ
(∑

Epj −
∑
Eqk

)
. This will immediately lead to the reduction formula in the form (76). But

because the delta function has rapid variations in some directions, a more detailed derivation is needed.
Let us define deviation variables

δp0
j = p0

j − Epj , δq0
k = q0

k − Eqk , (149)

and a quantity

H(δq0
1 , . . . , δq

0
n, δp

0
1, δp

0
2) = (c∗)nc2

n∏
k=1

d̃qk

∫ 2∏
j=1

d̃pj

[
n∏
k=1

g̃k(qk)

]∗ 2∏
j=1

f̃j(pj)×

× (2π)4δ(3)
(∑

pj −
∑

qk

)
δ
(
X +

∑
Epj −

∑
Eqk

)
Γn+2(−q1, . . . , qn−1, p1, p2) (150)

that contains all the smooth dependence on the energy variables together with the energy-conservation delta function.
Here X =

∑
δp0
j −

∑
δq0
k, and the momenta in the amputated Green function are set as follows: p0

j = δp0
j +Epj and

q0
k = δq0

k + Eqk . When all the deviation variables are set to zero, H is of the form of the integral of wave functions
with the S-matrix that is given by the right-hand side of (76). Our task is to prove that this quantity does in fact
equal the left-hand side of Eq. (146), and hence that the reduction formula is correct.

We use the change of variable to allow us to apply the energy-conservation delta function to the 3-momentum
variables instead of the energy variables. Then we use (58) for each external propagator pole, and find that Eq. (146)
gives

〈g1, . . . , gn; out|f1, f2; in〉conn = lim
infinite

time

∫ n∏
k=1

dq0
k

2π

2∏
j=1

dp0
j

2π
H(δq0

1 , . . . , δq
0
n, δp

0
1, δp

0
2)×

×
n∏
k=1

[
i

δq0
k + iε

e−iδq
0
ktk,+ F̃ ∗(δq0

k,∆tk,+)

] 2∏
j=1

[
i

δp0
j + iε

e−iδp
0
j (−tj,−) F̃ (δp0

j ,∆tj,−)

]
. (151)
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Now H is smooth as the energy-deviation variables δp0
1, . . . , δq

0
n, and hence X, go to zero. We can therefore set the

energy deviation variables to zero in H. The n + 2 energy-deviation variables are now independently integrated. So
we apply Eq. (148) to each of the integrals, to obtain

〈g1, . . . , gn; out|f1, f2; in〉conn =

∫ n∏
k=1

d̃qk

2∏
j=1

d̃pj

[
n∏
k=1

g̃k(qk)

]∗ 2∏
j=1

f̃j(pj)Sq1,...,qn;p1,p2
, (152)

where Sq1,...,qn;p1,p2
= H(0, . . . , 0). This is of the form of the defining equation (39) of the S-matrix, with the S-matrix

now proved to be given by the already stated form in Eq. (76), as regards the connected component.
This completes the proof of the reduction formula for the connected component of the S-matrix.

E. No-scattering term

We now consider the contribution of disconnected parts of the Green function to the 2→ 2 S-matrix. This part of
the Green function is

G̃4,no scatt.(−q1,−q2, p1, p2) =

2∏
j=1

[
Ĝ2(p2

j ) (2π)4δ(4)(pj − qj)
]

+ Term with q1 and q2 exchanged. (153)

We treat each factor separately, and each gives a contribution to 〈g1, g2; out|f1, f2; in〉 of the form

1

|c|2 lim
infinite

time

∫
d̃p [g̃(p)]

∗
f̃(p)

∫
dp0

2π

(Ep + p0)2

2Ep
e−i(p

0−Ep)(t+−t−) F̃ ∗(p0 − Ep,∆t+) F̃ (p0 − Ep,∆t−) Ĝ2(p2). (154)

Use of Eq. (148) show that this equals

〈g|f〉 =

∫
d̃p [g̃(p)]

∗
f̃(p). (155)

Hence the no-scattering term for 〈g1, g2; out|f1, f2; in〉 is

〈g1, g2; out|f1, f2; in〉noscatt. = 〈f1|g1〉〈f2|g2〉+ 〈f1|g2〉〈f2|g1〉, (156)

which is exactly the expected non-scattering term in the S-matrix.

F. More general cases

The above derivations get the connected and discon-
nected components of the S-matrix for the case of n′ = 2
incoming particles. Exactly the same principles apply to
other cases (n′ = 1 and n′ > 2).

For general values of n′ and n, there is a correspon-
dence between the connected components of Green func-
tions and the connected components of the S-matrix.
Each kind of object is a sum over all possibilities for
a product over connected components. Each connected
component has a delta function for 4-momentum con-
servation. However, only those connected components of
Green functions that can obey the constraint of conserva-
tion of on-shell 4-momenta give non-zero contributions.
Other terms give zero, of which an example, already re-
ferred to, is a component that connects only incoming
lines to incoming lines, but not to outgoing lines.

For each connected component, either a version of the
proof and formula for the 2 → n connected component

applies, or the method of Sec. XI E applies to a compo-
nent with one incoming and one outgoing line.

Another important situation is for matrix elements of
an operator or a time-ordered product of operators be-
tween between in- and out-states, of the kind shown in
(77). The method of derivation of the reduction formula
works equally well here. The only change in the proof
that is needed is to insert the factors of extra operators
into the vacuum matrix element on the right of Eq. (136),
between the φ(yk) and the φ(xj). The remaining manip-
ulations all go through unchanged.

XII. VERIFICATION OF PROPERTIES OF
CREATION AND ANNIHILATION OPERATORS

In a sense, the reduction formula both for the S-matrix
and for matrix elements of operators between in- and
out-states has provided a convenient way of formulat-
ing a solution of a QFT. Then, in accordance with the
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principles laid out in Sec. II B, it is necessary to ver-
ify that the solution has the properties attributed to it
that were the basis of the derivations. In particular, we
need to show that the creation and annihilation opera-
tors defined in Sec. IX E actually self-consistently obey
the properties that the definitions were intended to pro-
vide. These properties include their commutation rela-
tions, and also that the limits defining the operators can
be taken as strong limits. Underlying all the derivations
are established properties of time-ordered Green func-
tions and of their Fourier transforms into momentum
space. The properties are certainly valid to all orders
of perturbation theory.

We must first ensure that the limits of the annihila-
tion and creation operators exist as strong limits. This is
the biggest difference compared with the standard LSZ
formulation. Then other derivations, e.g., of the commu-
tation relations, are routine, unlike the case when only
weak limits exist.

Readers particularly concerned about rigor would
probably look for yet further properties to verify.

A. Strong limit for in-creation operator

By definition, saying that the strong limit exists for
the in-creation operators means that∥∥∥A†f (t; ∆t) |f1, . . . , fn′ ; in〉 − |f, f1, . . . , fn′ ; in〉

∥∥∥2

(157)
goes to zero when the standard limit of infinite past time
is taken.

Following the observations in App. A, a useful
method for showing that the strong limit exists for

liminfinite
past
time

A†f (t,∆t) starts from applying the reduction

formula to obtain matrix elements with basis out states:

〈q1, . . . , qn; out|A†f (t; ∆t) |f1, . . . , fn′ ; in〉. (158)

The expected expected limit is

〈q1, . . . , qn; out|f, f1, . . . , fn′ ; in〉. (159)

The quantity in (157) is the same as

∑
n

1

n!

∫ n∏
k=1

d̃qk

∣∣∣〈q1, . . . , qn; out|A†f (t; ∆t) |f1, . . . , fn′ ; in〉 − 〈q1, . . . , qn; out|f, f1, . . . , fn′ ; in〉
∣∣∣2 , (160)

and we will show that this goes to zero in the limit of infinite time in the past.
Generally in the cases of interest here, the difference between having a strong limit and a weak limit arises because

of time-dependent phase factors such as we found in (96). If the infinite-time limit depends on a suppression obtained
by integrating that phase over final-state momenta in a matrix element with a wave function for a normalizable
out-state, then the limit is weak. If instead the integral with a smooth wave function is not needed to get the limit,
then the infinite-time limit exists in the matrix element with a basis out-state. Any remaining phase factor cancels
in the absolute square of the matrix element in (160), and the limit is strong.

Now from the momentum-space formula in (106) for A†f (t; ∆t), we get

〈q1, . . . , qn; out|A†f (t; ∆t) |f1, . . . , fn′ ; in〉

=
1

c∗

∫
d4p

(2π)4
f̃(p) F̃ (p0 − Ep,∆t)

Ep + p0

2Ep
e−i(Ep−p0)t 〈q1, . . . , qn; out| φ̃(p) |f1, . . . , fn′ ; in〉

=
1

c∗

∫ n′∏
j=1

d̃pj

n′∏
j=1

f̃j(pj)

∫
d4p

(2π)4
f̃(p)

Ep + p0

2Ep
e−i(Ep−p0)t F̃ (p0 − Ep,∆t)×

× 〈q1, . . . , qn; out| φ̃(p) |p1, . . . ,pn′ ; in〉. (161)

In previous sections, we have generally taken care to write matrix elements with normalizable states, i.e.,
with wave packet states. Now we have a matrix element that has states of particles of definite momentum.
For our discussion, it is defined to be the momentum-space quantity that appears when the reduction for-
mula is used to express 〈g1, . . . , gn; out| φ̃(p) |f1, . . . , fn′ ; in〉 in terms of the momentum-space Green functions
Gn′+n+1(−q1, . . . ,−qn, p1, . . . , pn′ , p).

We decompose by connected components. Some examples of the connectivity of graphs for
〈q1, . . . , qn; out| φ̃(p) |p1, . . . ,pn′ ; in〉 are shown in Fig. 9. There is one component where all of φ̃(p) and the
lines for the external particles are connected. Added to this is a sum over terms each of which is a product of two
or more smaller connected components. In each term, one component contains the field φ̃(p), and the remainder are
equivalent to connected factors that also appear in the S-matrix with some subset of the n+ n′ particles used here.

Observe that the momentum p is defined to flow into the Green function at the external vertex for the Fourier
transformed field φ̃(p), and that the Green function has a pole when p2 = m2

phys.
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FIG. 9. Showing examples of connectivity structure for a matrix element of A†f (t; ∆t) and the Green function corresponding

to it, with n′ = 3 and n = 6.

First, consider a component connected to φ̃(p) that has one or more particles in the initial state. The F̃ factor
enforces that up to strongly suppressed contributions, p is close to mass shell; the suppression is the same for all final
states, so it will also apply to the sum and integral over states in (160). It also ensures that components without at
least two particles in the final-state are suppressed, by the requirements for a momentum-conserving on-shell process.

The momentum conservation delta function removes the integral over p, leaving an integral over the pj . Then the
phase factor is

e−i(Ep−p0)t = exp
[
−it

(
E∑

qk−
∑

pj
−
∑

Eqk +
∑

Epj

)]
. (162)

The argument in Sec. XI D shows that a small deformation on the integral over the initial state momenta gives the
relevant connected component of (159) as the limit. There are bounds on the errors that are uniform in the final
state.

The remaining case is where there is a connected component with zero particles in the initial state. This corresponds
to the example calculations that we performed in Secs. IX C and X for the LSZ operators and for the modified operators.
When there is more than one particle in the final state, e.g., the first factor in Fig. 9(d), we get a strong suppression

caused by the F̃ factor, unlike the case for the LSZ operator. The suppression is uniform in the final state.

There remains the expected one-particle case, as in the first factor in Fig. 9(b). Momentum conservation between

p and the single initial particle ensures that the phase factor and the F̃ factor are both unity.

The overall result is then a strong limit:

A†f ; in |f1, . . . , fn′ ; in〉,= lim
infinite

past
time

A†f (t; ∆t) |f1, . . . , fn′ ; in〉,= |f, f1, . . . , fn′ ; in〉. (163)

A similar derivation applies to the final state for the creation operators for outgoing particles.
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FIG. 10. Showing examples of connectivity structure for a matrix element of Af (t; ∆t) and the Green function corresponding
to it, with n′ = 3 and n = 6. This is the same as Fig. 9, except that graphs are reoriented for the vertex for Af to emphasize
its purpose as an annihilation operator.

B. Strong limit for in-annihilation operator

Next we consider the operator Af (t,∆t) in the infinite past, where it is intended to annihilate one particle. The
equation for the matrix element is obtained by a minor modification of (161):

〈q1, . . . , qn; out|Af (t; ∆t) |f1, . . . , fn′ ; in〉

=
1

c

∫
d4q

(2π)4
f̃∗(q)

Eq + q0

2Ep
ei(Eq−q0)t F̃ ∗(q0 − Eq,∆t) 〈q1, . . . , qn; out| φ̃(−q) |f1, . . . , fn′ ; in〉

=
1

c

∫ n′∏
j=1

d̃pj

n′∏
j=1

f̃j(pj)

∫
d4q

(2π)4
f̃∗(q)

Eq + q0

2Eq
ei(Eq−q0)t F̃ ∗(q0 − Eq,∆t)×

× 〈q1, . . . , qn; out| φ̃(−q) |p1, . . . ,pn′ ; in〉.
(164)

Here the momentum q is defined to flow out of the corresponding Green function, as appropriate for an operator
that is intended to destroy one of the initial-state particles. We will highlight the changes with the calculation for
the creation operator. Unchanged is that F̃ strongly restricts q to on-shell momentum, but now with positive energy
flowing out of the Green function. Examples of the connectivity structure are shown in Fig. 10.

Consider first a connected component with at least one initial particle and at least one final particle.
In the derivation of the reduction formula we used this annihilation operator at large positive time. The contour

deformation to make ei(Eq−q0)t suppressed on the deformed contour crossed the pole in the propagator, and picked
out the pole contribution. But now with the opposite sign of t, the contour deformation is in the opposite direction, so
the contribution is suppressed, with a suppression uniform in the final state. This result is illustrated by the following
limit of Eq. (147):

lim
t→−∞
∆t→∞

∆t/|t|→0

∫
dδE

2π
e−iδE tF̃ (δE,∆t)

i

δE + iε
= 0. (165)



38

All other connected factors have no particles in either the initial or the final states. The F̃ factor suppresses all of
them with one exception. The exception is a component with one initial particle and no final particle, i.e., of the form

〈0|Af (t; ∆t) |f1; in〉, (166)

illustrated by the first factor in Fig. 10(c).

Because the single particle is on-shell, there is no longer a phase factor. Instead we just get
∫

d̃p f̃∗(p)f̃1(p), as in
the calculations in Sec. X. Observe that this is even independent of t and ∆t.

The overall result is that in the limit of infinite time in the past, the operator annihilates one incoming particle,
and that the limit is a strong limit:

Af ; in |f1, . . . , fn′ ; in〉 = lim
infinite

past
time

Af (t; ∆t) |f1, . . . , fn′ ; in〉 =

n′∑
j=1

|f1, . . . , fn′ ,with fj omitted; in〉
∫

d̃p f̃∗(p)f̃j(p).

(167)

C. Comparison with LSZ

Let us now compare with the situation for the LSZ

operators a†f (t). For the LSZ operators, the on-shell con-
dition for a created or annihilated particle, i.e., for p or
q, was obtained from an integration over a rapidly os-
cillating phase factor identical with the one in (161) or
(164). With the new operators, the on-shell condition is

imposed more robustly by the F̃ factors. (The compar-
ison between the two cases is assisted by observing that
matrix elements of the LSZ operators can be obtained
from those for the new operators simply by omitting the
F̃ factor, or alternatively by setting ∆t = 0.)

In all but one case, the suppression in the LSZ case
can be obtained by integrating over the momenta in the
initial state. The one exception is where we have a con-
nected component with no initial-state particles. This is
exactly the situation explored by an explicit calculation
in Sec. IX C 2, and more generally in Sec. IX D. In this
case, momentum conservation between p or q and the
external particles results in a phase factor that depends
only on final-state momenta. Then an integral over final-
state momenta is needed to get a suppression from the
oscillations in the phase factor. Without the integral,
there is no suppression, and hence we have a weak limit,
but not a strong limit for the operators: The phase factor
cancels in the integral over final states in (160).

D. Commutation relations

Given now that the strong limits exist for the anni-
hilation and creation operators, and that they have the
expected action on in-states, it is elementary to derive
the commutators.

For A†f ; in and A†g; in we have

A†f ; inA
†
g; in|f1, . . . , fn′ ; in〉 = |f, g, f1, . . . , fn′ ; in〉. (168)

Now the states are symmetric under exchange of the la-
bels (as follows via the reduction formula from a corre-

sponding property of Green functions). So we get the
same result by applying the operators in the reverse or-
der. Hence the operators commute:

[A†f ; in, A
†
g; in] = 0. (169)

For the commutator of two annihilation operators, the
derived result for the action of an annihilation operator
shows that two of them commute.

For one annihilation and one creation operator, we ob-
tain the standard commutator:

[Af ; in, A
†
g; in] =

∫
d̃p f̃∗(p)f̃j(p). (170)

XIII. GENERALIZATIONS

Various extensions and generalizations of the derived
results are quite immediate:

1. The precise form of F is irrelevant if it satisfies the
same general specifications.

2. The same argument can be applied in any theory
with any number of kinds of particle.

3. The field used in the Green function for a particular
particle can be any field that has a nonzero matrix
element between the vacuum and a state of one of
that kind of particle. This generally means that the
field should “have quantum numbers corresponding
to the particle”. (E.g., for a proton we could use an
operator with two anti-upquark fields and one anti-
downquark field. These would be antiquark fields,
because with the definition in (57), the fields need
to be those that have the correct quantum numbers
to create the particle.)

4. In this context the jargon is that the field is an
“interpolating field” for the particle.
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5. The choice of interpolating field is not unique. Thus
in φ4 theory, φ3 or ∂φ/∂xµ would work as interpo-
lating fields instead of φ, but at the expense of com-
plication compared with the use of the elementary
field.

6. The coefficient c in the vacuum-to-one-particle ma-
trix element generally depends on both the kind of
particle and the field used. It is in general complex;
given a particular type of particle, the phase can be
eliminated by convention only for one field.

For another example of an interpolating field, consider a
Schrödinger field theory of an electron field and a proton
field, with a Coulomb interaction. This theory has single
particle states not only for electrons and protons but also
for every stable energy level of hydrogen atom, and in fact
for any stable ion and molecule. A possible interpolating
field for s-states of hydrogen would be ψ†e(t,x)ψ†p(t,x).
By choice of different time-dependent wave functions in
the derivation of the LSZ formula we can pick out differ-
ent energy levels of the atom for the particle that appears
in an S-matrix element. If we want to deal with all en-
ergy levels, and not just s-states, one could separate the
electron and proton fields: ψ†e(t,x + y)ψ†p(t,x− y).

Particularly notable applications in strong interactions
are for pseudo-scalar mesons like the pion, since for the
pion, certain Noether currents for symmetries can be
used as interpolating fields. Interesting results can be
found be applying Ward identities for the symmetries to
the Green functions used in the LSZ formula. This gets
into the subject known as “current algebra”.

XIV. RELATION TO HAAG-RUELLE

In the formulation of Haag [4, 5] and Ruelle [6] the
aim was to find a time-dependent operator that when
applied to the vacuum it creates a single particle. They
show that in an infinite-time limit products of such oper-
ators applied to the vacuum create general in- and out-
states with desired wave functions. However they were
concerned with general proofs rather than providing, for
example, fully explicit constructions of the operators in a
form useful for calculations in both coordinate and mo-
mentum space. Indeed Ruelle even states that Haag’s
results are “less powerful than those of LSZ”: in contrast
the formulation in the present paper are intended to be
more powerful than LSZ.

The formulation given in the present paper organizes
the construction of creation operators in a different way.
It starts from the LSZ definition of a creation operator,
which only has a spatial integral over a product of field
and wave function and no time integral. This is then
modified by an average over time. In contrast the Haag-
Ruelle formulation, the order of the averaging and the
integration with a wave function are reversed. Moreover,
the averaging is over space-time, not just over time.

In the Haag-Ruelle method, the starting point is an
“almost local” field defined by averaging φ with a test
function h:

φh(x) =

∫
d4y h(x− y)φ(y). (171)

Then a candidate creation operator is defined by applying

the formula for a†f (t) to φh(x) instead of to φ(x):

a†f,h(t) = −i
∫

d3x f(x)

←→
∂

∂t
φh(x). (172)

Given the Fourier transform of h,

h(x− y) =

∫
d4p

(2π)4
h̃(p) eip·(x−y), (173)

the momentum-space expression for a†f (t) is

a†f,h(t) =

∫
d̃p f̃(p)

∫
dp0

2π
×

× φ̃(p) h̃(p) (Ep + p0) e−i(Ep−p0)t. (174)

To enable this operator to create a single-particle state
of specified momentum content, but no multi-particle
component, a restriction is made on the support of h̃(p).
Thus Duncan [2] required the support confined to a re-
gion am2

phys < p2 < bm2
phys with 0 < a < 1 and

1 < b < 4, and that the function be non-zero on the whole

of the one-particle mass shell, where p0 =
√
p2 +m2

phys.

In addition, h̃(p) is zero when p0 is negative. Given the
known matrix element of the field between the vacuum
and the one-particle states, it follows that the state cre-

ated by a†f,h(t) acting on the vacuum is

a†f,h(t)|0〉 =

∫
d̃p h̃(Ep,p) f̃(p) |p〉. (175)

As usual with test functions, h̃(p) is both infinitely differ-
entiable and decreases faster than any power of p when p
gets large. Since therefore h̃(Ep,p) cannot be a constant
everywhere, the state differs from the one with wave func-
tion f̃(p). Nevertheless, given any desired normalizable
single particle state, it can be created by suitably choos-
ing f̃(p) in (175), i.e., by replacing f̃ by f̃(p)/h̃(Ep,p).
(A slightly different formulation with the same aim was
given by Hepp [7].)

However what is not provided in this formalism is a
simple formula involving an integral of the coordinate-
space field to give exactly the one-particle state of a par-
ticular target wave function |f〉.

In contrast, the formulation in the present paper has
reversed the order of the averaging operation and the in-
tegration with the wave function f , and has also made
the averaging function a function of time only. For this
to work, stronger dynamical requirements are imposed
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on large momentum behavior of matrix elements than
in the Haag-Ruelle formulation. These requirements are
certainly valid in the renormalizable QFTs that we are
normally interested in, at least as regards what can be
seen in perturbation theory. The Haag-Ruelle method
comes from a tradition that deliberately aims to derive
general properties of a relativistic QFT without appeal-
ing to more detailed dynamical properties that generally
are consequences of particular QFTs.

A further difference compared with the Haag-Ruelle

method is that the operators A†f (t,∆t) defined in the
present paper, have a second parameter ∆t that also has
to be taken to infinity. This change is what enables ex-
plicit calculationally useful formulas to be given in both
coordinate and momentum space—see Eq. (106). The ex-
tra parameter has a useful interpretation in terms of an
energy uncertainty, and physically should correspond to
the experimental realities of making beams of particles of
almost exactly given momenta. The explicit coordinate-

space formula for A†f (t,∆t), together with the new proof
of the reduction formula, are intended to be useful for
further applications, e.g., to the treatment of unstable
particles, as in Ref. [12].

The strong commonalities between the Haag-Ruelle
and the new methods are that they perform some kind of
averaging of the operators that brings in an integral over
time, and that the nature of the averaging is arranged
to restrict the momentum-space support of the creation
operator to correspond exactly to a single particle. That
is, the coupling to multi-particle states is arranged to
be zero by construction of the definition (assisted by a
limiting operation).
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Appendix A: Strong v. weak limits, etc

In treatments of scattering theory, we often discuss
limits of operators as a time parameter goes to infinity.
It is useful to distinguish three kinds of definition of a
statement that limt→∞A(t) = B, where A(t) and B are
linear operators on the state space of a theory:

• A very strong limit is where some measure of the
difference between the operators A(t) and B them-
selves goes to zero:

‖A(t)−B‖ → 0. (A1)

Here the measure of the size of A(t) − B does not
depend on the states acted on. The name is coined
here. As will be pointed out below, limits of this

kind typically do not exist for the operators used
in the analysis of scattering.

• A strong limit is where the limit applies to states:

‖(A(t)−B) |f〉‖ → 0, (A2)

for each state |f〉, but where the approach to the
limit is permitted to depend on the state.

• A weak limit is where the limit is only for matrix
elements

|〈g| (A(t)−B) |f〉| → 0, (A3)

for each pair of normalizable states |f〉 and 〈g|, but
where the approach to the limit is permitted to
depend on the states.

The existence of a very strong limit implies the existence
of the strong and weak limits, and the existence of a
strong limit implies the existence of a weak limit. But
the reverse implications are false.19

The existence of a very strong limit is equivalent to
saying that the approach of 〈g|A(t)|f〉 to 〈g|B|f〉 is uni-
form in both of the states 〈g| and |f〉. The existence of
a strong limit is equivalent to uniformity in |f〉 only.

Generally, in applications such as to evolution opera-
tors, creation operators, and the like in scattering theory,
very strong limits do not exist. This is simply because
we use theories that are invariant under time transla-
tions. Therefore (Heisenberg-picture) states may be con-
structed that correspond to a physical scattering that oc-
curs arbitrarily far in the past or future. How far in time
one has to go to get an approximation that corresponds
to separated incoming or outgoing particles depends on
when the scattering(s) occur, and no fixed time indepen-
dent of the state suffices. Thus very strong limits do not
exist in such cases.

Calculational methods (e.g., perturbation theory) lend
themselves naturally to the calculation of matrix ele-
ments rather than of the operators themselves. So it is
useful to make definitions of the different kinds of limit
in terms of matrix elements, both with normalized states
and with states of particles of definite momenta. More-
over the matrix elements are typically between an in and
an out state, i.e., in using the definitions, we would nor-
mally replace |f〉 by |f ; in〉, and |g〉 by |g; out〉, with
f and g denoting specifications of in- and out-states in
terms of their particle content, with the notation of Sec.
IV D.

All the criteria for the different limits can be expressed
in terms of

εME(t, f, g)
def
=
|〈g|(A(t)−B)|f〉|
‖|g〉‖ ‖|f〉‖ . (A4)

19 For operators on a finite-dimensional space, all three concepts
of a limit are equivalent. The difference only appears when the
operators act on an infinite-dimensional space, which is always
the case in scattering problems.
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Here there is a factor of the norms of the states in the
denominator to make the quantity invariant under scaling
of the states.

The definition that the weak limit exists is simply the
statement that εME(t, f, g)→ 0 as t→∞ for each f and
g.

Now the Cauchy-Schwartz inequality implies that

|〈g|(A(t)−B)|f〉| ≤ ‖|g〉‖ ‖(A(t)−B)|f〉‖, (A5)

with equality only when |g〉 is proportional to (A(t) −
B)|f〉. So

εME(t, f, g) ≤ ‖(A(t)−B)|f〉‖
‖|f〉‖ . (A6)

This immediately shows that if the strong limit exists, so
does the weak limit.

Typically the proofs of existence of a limit are first
made for t→∞ of the matrix element with fixed states,
with a finding that the weak limit exists. Then a possible
approach to determining whether in addition the strong
limit exists is to find an upper bound to εME(t, f, g) as g
is varied with |f〉 fixed. So we define

εstate(t, f)
def
= sup

non-zero |g〉
εME(t, f, g)

= sup
non-zero |g〉

|〈g|(A(t)−B)|f〉
‖|g〉‖ ‖|f〉‖ . (A7)

(Here we use the notation for the supremum, i.e., the
least upper bound.) We have already seen that the right-
hand side is the same as ‖(A(t) − B)|f〉‖/‖|f〉‖. So if
we can bound εstate(t, f) on the basis of matrix element
calculations and show that it goes to zero as t→∞, then
we know that the strong limit exists.

Now, in calculations and proofs we often express a ma-
trix element in terms of an integral over momenta — see
Secs. IX C 5 and XI, for example. Then the t dependence
appears as a phase, which commonly oscillates infinitely
rapidly as t → ∞. The limit then commonly involves
strong cancellations because of the oscillations, as in the

weak limits of the LSZ operator a†f (t). Then for a given

value of t, we may be able to change the state |g〉 to an-
other state |gt,f 〉 that has the same norm and in which
the wave functions are given phases that cancel the first-
mentioned phase. See Sec. IX C 5 for an example.

In this situation, since all possible states |g〉 are allowed
in calculating the bound in Eq. (A7), we therefore find
that εstate(t, f) is independent of t, and hence that the
strong limit does not exist.

Another approach is convenient when we specify |f〉 as
an in-state, is to express the norm of (A(t)−B)|f ; in〉 in
terms of basis out-states of particles of definite momenta:

‖(A(t)−B)|f ; in〉‖2

=
∑∫

dX |〈X; out|(A(t)−B)|f ; in〉|2 . (A8)

Here the integral over X is a sum and integral over all
out-basis states, and includes the appropriate normal-
ization factor. Consider now the situation (as with the
LSZ operators) that the weak limit with normalizable
states relies on a cancellation of rapid oscillations of a
momentum-dependent phase factor, and that this needs
an integral over wave functions for both the initial and
final states. In the absolute value of a matrix element
with a momentum eigenstate, as in the right-hand side
of Eq. (A8), the phase is replaced by unity. Then we no
longer have a suppression as t → ∞. A typical example
of this situation was shown in Sec. IX C 2.

Finally, we come to the possible existence of a very
strong limit. Let us define the size of the difference be-
tween the operators A(t) and B in terms of matrix ele-
ments by

‖A(t)−B‖ = εop(t)

def
= sup

non-zero |f〉,|g〉

|〈g|(A(t)−B)|f〉|
‖|g〉‖ ‖|f〉‖

= sup
non-zero |f〉,|g〉

εME(t, f, g)

= sup
non-zero |g〉

εstate(t, f). (A9)

The variety of forms for this definition relates the size of
difference of operators to the formulas we used for the
determining the existence of weak and strong limits.

First these results show explicitly that if the very
strong limit exists, then so do the strong and weak limits.

We also see how it may happen that the strong and
weak limits exist, but the very strong limit can be shown
not to exist. Suppose, as is usual in this context, that the
t dependence is confined to a phase factor in momentum-
space integral and that the integrand contains factors of
momentum-space wave functions. Then we may be able
to cancel the phase by changing the states to certain
other states |ft〉 and |gt〉 with appropriate t-dependent
phases in their momentum-space wave functions, and
hence unchanged norms. Such is the case in the deriva-
tion of the reduction formula, where the t-dependent
phases in Eq. (146) can be canceled by changing the wave
functions. Then 〈gt|(A(t)−B)|ft〉 is independent of time,
and so

‖A(t)−B‖ ≥ |〈gt|(A(t)−B)|ft〉|
‖|gt〉‖ ‖|ft〉‖

=
|〈g|(A(0)−B)|f〉|
‖|g〉‖ ‖|f〉‖ , (A10)

which is nonzero. Then ‖A(t) − B‖ cannot go to zero
as t → ∞, and therefore in this case, the very strong
limit does not exist. As already mentioned, the non-
existence of a very strong limit is to be expected in a
time-translationally invariant theory; the approach to an
infinite-time limit is controlled by the time relative to a
scattering event, and the time of a scattering depends on
the state considered.
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