Problem C13.1 Show that for the *v*-spinors the following completeness relation holds

$$\sum_{s=\pm} v_s(\mathbf{p})\overline{v}_s(\mathbf{p}) = p - m$$

Problem H13.1 Consider electron-muon scattering $e^-(p_1)\mu^-(p_2) \rightarrow e^-(p_3)\mu^-(p_4)$. For $E_1 \ll m_{\mu}$ this problem is quite similar to Rutherford scattering, the role of the heavy nucleus being played by the muon.

- (a) Draw the Feynman diagrams which contribute at leading order.
- (b) Write the invariant matrix element \mathcal{M} .
- (c) Compute the spin-sum and -average of the the matrix element-squared $\langle |\mathcal{M}|^2 \rangle$
- (d) Evaluate the $p_i \cdot p_j$ and $t \equiv (p_1 p_3)^2$ in the center of mass system assuming that E_1 is much smaller than the muon mass, and $|\mathbf{p}_1|$ is of the order of the electron mass. You should find

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4 m_{\mu}^2}{v^4 E_1^2 \sin^4(\theta/2)} \left[1 - v^2 \sin^2(\theta/2) \right]$$

where $v \equiv |\mathbf{p}_1|/E_1$ is the velocity of the incoming electron, and θ is the angle by which it gets reflected.

(e) Compute the differential cross section $d\sigma/d\cos\theta$ in the center of mass system. Compare your result with the classical formula for Rutherford scattering which can be found, e.g., in Wikipedia.