Problem C12.1 Prove the following relations for the traces of Dirac matrix by using the Clifford algebra.
(a) $\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu}$
(b) $\operatorname{tr}\left(\gamma^{\alpha} \gamma^{\beta} \gamma^{\sigma} \gamma^{\rho}\right)=4\left(\eta^{\alpha \beta} \eta^{\sigma \rho}-\eta^{\alpha \sigma} \eta^{\beta \rho}+\eta^{\alpha \rho} \eta^{\beta \sigma}\right)$

Hint: First use the Clifford algebra to move γ^{α} to the right. Then use the cyclic property of the trace.

Problem H12.1 Consider the 4-point function

$$
\langle 0| T \psi\left(x_{1}\right) \bar{\psi}\left(x_{2}\right) \psi\left(x_{3}\right) \bar{\psi}\left(x_{4}\right)|0\rangle
$$

of free Dirac fields. Use the generating functional $Z[\eta, \bar{\eta}]$ to show that it can be written as

$$
S_{F}\left(x_{1}-x_{2}\right) S_{F}\left(x_{3}-x_{4}\right)-S_{F}\left(x_{1}-x_{4}\right) S_{F}\left(x_{3}-x_{2}\right)
$$

How does Wick's theorem for fermions differ qualitatively from the one for bosons?

Problem H12.2 Consider a Dirac fermion ψ and a a real scalar field φ. The Lagrangian is

$$
\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{\mathrm{int}}
$$

with

$$
\mathcal{L}_{0}=\bar{\psi}(i \not \partial-m) \psi+\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} M^{2} \varphi^{2} .
$$

The two fields interact through the so-called Yukawa interaction

$$
\mathcal{L}_{\mathrm{int}}=-h \varphi \bar{\psi} \psi
$$

The constant h is called Yukawa coupling. As usual, perturbation theory is obtained by expanding $\exp \left\{i \int d^{4} x \mathcal{L}_{\text {int }}\right\}$ in the path integral.
Consider the connected scalar field propagator at order h^{2}.
(a) Draw the corresponding Feynman diagram. [A fermion propagator is drawn with an arrow-line \longleftarrow with the arrow pointing from $\bar{\psi}$ to ψ.]
(b) Compute the scalar self-energy $\Pi(p)$ (in momentum space). Write your result as a Feynman-parameter integral which you do not need to compute.

